Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, je suis très perdu avec le cours de ma spécialité en mathématiques et la période pour le rendre a presque terminé. J'ai besoin de l'aide s'il vous plais, j'ai lu le cours plusieurs fois et je ne comprend pas encore comment le réaliser. Si quelqu'un peut m'aider je serai incroyablement reconnaissant.

Exercice 1
Soit f une fonction définie sur ]−5;+∞[ telle que f (x )= [tex]\frac{2}{x+5}[/tex]

1. En utilisant le taux de variation, déterminer la valeur du nombre dérivé en -3.
2. Déterminer l'équation réduite de la tangente à la courbe de f en -3.


Sagot :

Réponse :

Explications étape par étape :

■ dérivée f ' (x) = -2 / (x+5)² toujours négative

  donc la fonction f est toujours décroissante sur ] -5 ; +∞ [

■ méthode du taux de variation :

  [ f(x+h) - f(x) ] / h = [ 2/(x+h+5) - 2/(x+5) ] / h

                             = 2(x+5 - x-h-5) / [ h (x+5) (x+h+5) ]

                             = -2h / [ h (x+5)² ]

                             = -2 / (x+5)² .

■ nombre dérivé en x = -3 :

   f ' (-3) = -2 / 2² = -2 / 4 = -1 / 2 = - 0,5 .

■ recherche de l' équation de la tangente :

  f(-3) = 1

  y = -0,5x + b devient donc 1 = 1,5 + b d' où b = -0,5

  conclusion : l' équation de la tangente est donc :

  y = -0,5x - 0,5 .

Réponse :

Explications étape par étape :

1) f est une fonction rationnelle, continue et donc dérivable sur son ensemble de définition. f est par conséquent dérivable en -3

En utilisant la définition du nombre dérivé on obtient :  

[tex]f'(-3)= \lim_{x \to \--3} \frac{f(x)-f(-3)}{x-(-3)}= \lim_{x \to \--3} \frac{\frac{2}{x+5} -\frac{2}{-3+5} }{x+3}= \lim_{x \to \--3} \frac{\frac{2}{x+5} -1 }{x+3}=\lim_{x \to \--3} \frac{\frac{2-x-5}{x+5}}{x+3}=\lim_{x \to \--3} -\frac{\frac{x+3}{x+5}}{x+3}=\lim_{x \to \--3} -\frac{1}{x+5}=-\frac{1}{2}[/tex]

2) En utilisant la définition de la tangente d'une fonction en un point :

[tex]T: y=f(-3)+f'(-3)(x-(-3))=1+(-\frac{1}{2})(x+3)=1-\frac{1}{2}x-\frac{3}{2} =-\frac{1}{2}x-\frac{1}{2}[/tex]

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.