Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
f(x)=(ln(x+3)/(x+3) est de la forme U/V
U = ln(x+3)
V = x+3
V' = 1
U est de la forme lnW où W = x+3
U' = W'/W = 1/(x+3)
f'(x )= (U'V-UV')/V²
[tex]f'(x)=\frac{\frac{1}{x+3}*(x+3)-ln(x+3)*1}{(x+3)^2}=\frac{1-ln(x+3)}{(x+3)^2}[/tex]
(x+3)² est toujours >0 sur [0, + infini[
Le signe de f'(x) ne dépend que de 1-ln(x+3)
sur [0, + infini[ x+3 >=3 donc ln(x+3) >1 donc 1-ln(x+3) < 0
f'(x) < 0
f(x) est décroissante
J'espère que tu as compris
a+
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.