Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour , Bonjour
merci beaucoup​


Bonjour Bonjourmerci Beaucoup class=

Sagot :

Réponse :

Explications étape par étape :

View image olivierronat
View image olivierronat

Réponse :

1) déterminer les valeurs manquantes x3 et y4

     xG = (8.2 + 7.4 + x3 + 6.1 + 9)/5 = 7.5  ⇔ 30.7 + x3 = 37.5  ⇔ x3 = 6.8

     yG = (15 + 12.1 + 6.3 + y4 + 12)/5 = 12.6  ⇔ 45.4 + y4 = 63  ⇔ y4 = 17.6

2) représenter le nuage de points (xi ; yi) dans un repère orthogonal

    tu peux le tracer tout seul

en prenant  en abscisse  1 u = 1 cm

                    en ordonnée  1 u = 5 cm

3) déterminer une équation de la droite D de régression :

     a) y en x

     b) x en y

   xi              yi             xi²             yi²             xi.yi

 8.2             15          67.24        225            123

 7.4             12.1        54.76       146.41          89.54

 6.8             16.3       46.24       265.69        110.84

 6.1              17.6       37.21         309.76        107.36

  9                12           81             144              108

σxy = 1/n ∑xiyi - xGyG = 1/5[(123 - 94.5) + (89.54 - 94.5) + (110.84 - 94.5) + (107.36 - 94.5) + (108 - 94.5) = 1/5(28.5 - 4.96 + 16.34 + 12.86 + 13.5)

σxy = 66.24/5 = 13.248

σ²x = 1/n∑x²i - x²G = 1/5[(8.2² - 7.5²) + (7.4² - 7.5²) + (6.8² - 7.5²) + (6.1² - 7.5²) + (9² - 7.5²) = 1/5[(67.24 - 56.25) + (54.76 - 56.25) + (46.24 - 56.25) + (37.21 - 56.25) + (81 - 56.25) = 1/5(10.99 - 1.49 - 10.01 - 19.04 + 24.75)

σ²x =  5.2/5 = 1.04

σ²y = 1/n∑ y²i - y²G = 1/5[(225 - 158.76) + (146.41 - 158.76) + (265.69 - 158.76) + (309.76 - 158.76) + (144 - 158.76) = 1/5(66.24 - 12.35 + 106.93 + 151 - 14.76) = 297.06/5

σ²y = 297.06/5 = 59.412

a = σxy/σ²x  = 13.248/1.04 ≈ 12.738  

b = 12.6 - 12.738*7.5 = - 82.935

donc l'équation de la droite de régression de y en x  est :  

y = 12.732 x - 82.935

a' = σxy/σ²y = 13.248/59.412 ≈ 0.223

b' = 7.5 - 0.223*12.6 ≈ 4.69

x = 0.223 y + 4.69   l'équation de la droite de régression de x en y

4) montrer que ces deux droites se coupent au point G

y = 12.732 x - 82.935

x = 0.223 y + 4.69  ⇔ x = 0.223*(12.732 x - 82.935) + 4.69

⇔ x = 2.839236 x - 18.494505 + 4.69

⇔ 1.839236 x = 13.804505  ⇔ x = 13.804505/1.839236 ≈ 7.5

y = 12.732 * 7.5 - 82.935 = 12.555 ≈ 12.6

5) calculer le coefficient de corrélation linéaire entre x et y

          r = σxy/σxσy = 13.248/1.0198 x 7.709 ≈ 1.685  

                       

Explications étape par étape :

Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.