Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

bonjour je n'arrive pas a résoudre ceci stp de l'aide. On considère la fonction définie sur R par f(x) = |x² – 1|. 1) Donner, suivant les valeurs de x, une expression de f (x) sans les barres de valeur absolue. 2) Étudier la dérivabilité de f en 1 et en -1.​

Sagot :

Explications étape par étape:

Bonsoir, en premier lieu, il te faut savoir que |x| = x si et seulement si x >= 0 (supérieur ou égal).

Sinon, |x| = - x.

On commence donc par résoudre x^2 - 1 >= 0, qui équivaut à x^2 >= 1. Autrement dit, x € ]-infini ; -1] U [1 ; +infini[.

Pat conséquent, |x^2 - 1| = x^2 - 1 si et seulement si x appartient à l'intervalle précédent.

Autrement, si x € ]-1 ; 1[, alors |x^2 - 1| = -x^2 + 1.

2- On étudie la dérivabilité de en 1, lorsque x tend vers 1, avec x > 1.

Par définition, cela équivaut à calculer la limite du taux d'accroissement de [f(x) - f(1)] / (x-1) lorsque x tend 1, x > 1 (qu'on peut aussi appeler 1+).

f(x) - f(1) = x^2 - 1, donc la limite vaut (x^2 - 1) / (x-1) = x+1 = 2.

De même, lorsque x tend 1, avec x < 1 :

f(x) - f(1) = -(x^2 - 1), donc la limite vaudra - x - 1 = - 2, qui est différente de l'autre limite. f n'est donc pas dérivable en 1.

Par la même occasion, tu peux aussi prouver que f n'est pas dérivable en -1.

Bonne soirée

Réponse :

Explications étape par étape :

View image olivierronat