Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Explications étape par étape:
Bonsoir, en premier lieu, il te faut savoir que |x| = x si et seulement si x >= 0 (supérieur ou égal).
Sinon, |x| = - x.
On commence donc par résoudre x^2 - 1 >= 0, qui équivaut à x^2 >= 1. Autrement dit, x € ]-infini ; -1] U [1 ; +infini[.
Pat conséquent, |x^2 - 1| = x^2 - 1 si et seulement si x appartient à l'intervalle précédent.
Autrement, si x € ]-1 ; 1[, alors |x^2 - 1| = -x^2 + 1.
2- On étudie la dérivabilité de en 1, lorsque x tend vers 1, avec x > 1.
Par définition, cela équivaut à calculer la limite du taux d'accroissement de [f(x) - f(1)] / (x-1) lorsque x tend 1, x > 1 (qu'on peut aussi appeler 1+).
f(x) - f(1) = x^2 - 1, donc la limite vaut (x^2 - 1) / (x-1) = x+1 = 2.
De même, lorsque x tend 1, avec x < 1 :
f(x) - f(1) = -(x^2 - 1), donc la limite vaudra - x - 1 = - 2, qui est différente de l'autre limite. f n'est donc pas dérivable en 1.
Par la même occasion, tu peux aussi prouver que f n'est pas dérivable en -1.
Bonne soirée
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.