Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour,
Pourriez vous m'aider pour ces deux petites questions simples s'il vous plait ?

1) Que vaut la somme des 30 premiers naturels multiples de 7 ?

2) Quelle est la somme des 10 premiers termes d'une suite arithmétique de raison - 3 , dont le 20ème terme est -56 ?

J'ai déjà essayer de résoudre ces exercices mais je dois les recommencer, pourriez vous m'éclairer ?

Merci pour votre attention et pour votre aide Ă©ventuelle,
Bonne journée.


Sagot :

Explications Ă©tape par Ă©tape:

Bonsoir,

1- Ici, il te faut décomposer subtilement cette somme, pour éviter les calculs compliqués.

Il faudra donc sommer tous les termes de la forme 7k, avec k entier naturel allant de 1 Ă  30.

Soit S = 7 + 7*2 + 7*3 +...+ 7*30.

On factorise : S = 7*(1 + 2 +...+ 30).

Tu reconnais la somme des 30 premiers entiers naturels, dont on connaît la formule :

Pour n termes, tu as S = n*(n+1)/2.

Ici tu auras donc : S = 7 * (30*31)/2 = 3255.

2- Soit un, une suite arithmétique de raison r.

Alors pour tout entier naturel n, tu as :

un = u0 + n*r.

En effectuant la différence u(n+1) - un, tu constateras que tu retombes sur r, si tu souhaites vérifier.

La raison Ă©tant Ă©gale Ă  -3, tu auras :

Un = u0 - 3*n.

Le 20e terme valant -56, tu peux Ă©crire que u20 = u0 - 3*20 = - 56, d'oĂą u0 = 60 - 56 = 4.

La formule finale de suite arithmétique est donc :

Un = 4 - 3n.

Ensuite, il faut visualiser pour la somme, si tu sommes les 10 premiers termes, tu Ă©criras :

S = u0 + u1 +...+ u10

= u0 + (u0 - 3) + (u0 - 6) +...+ (u0 - 30)

= 11*u0 - 3*(1 + 2 +...+ 10) en factorisant par 3.

= 11*u0 - 3*(10*11)/2

= 44 - 3*55

= - 121.

Bonne soirée

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.