Réponse :
Explications étape par étape :
On sait que le triangle ABC est isocèle en A avec AB = 5 cm et BC = 5 cm
Donc AB = AC = 5 cm
par construction on sait aussi que le triangle BCE est isocèle en B car le point E appartient au cercle et le point C appartient aussi au cercle donc on a
BE = BC = 3 cm
dans le triangle ABC isocèle en A, on sait que les angles suivants sont égaux
angle ABC = angle BCA
dans le triangle BCE isocèle en B on sait que les angles suivants sont égaux
angle BEC = angle BCE
On constate donc l'on a bien deux angles identiques entre le triangle ABC et le triangle BCE :
angle BEC = angle BCE = angle ABC = angle BCA
donc les deux triangles ABC et BCE sont semblables
Comme les triangles sont semblables on a
ABC et BCE
AB / BC = AC/ BE = BC/CE
avec AB = AC = 5 cm et BE = BC = 3 cm
Application numérique
5/3 = 5/3 = 3 / CE
on a donc CE = 3×3/5= 9/5= 1,8 cm
comme les triangles ABC et BCE sont semblables on a :
l'aire du triangle BCE = A
l'aire du triangle ABC = B
B = (5/3)² × A et donc on en a B = 25/ 9 × A
donc A = 9/25 × B
ce qui signifie que l'aire du triangle BCE est 9/25 fois l'aire du triangle ABC