Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Explications étape par étape:
Bonsoir, il s'agit d'une méthode classique. Si tu observes bien, tu as un facteur sinus au carré, un autre simple. Si tu poses X = sin(x), tu obtiens une inéquation du 2nd degré, telle que :
Rac(2)*X^2 - (Rac(2) + 1)*X + 1 >= 0
On commence par déterminer le discriminant de l'expression : D = [- (Rac(2) + 1))]^2 - 4*1*Rac(2) = (Rac(2) + 1)^2 - 4*Rac(2) = 2 + 2*Rac(2) + 1 - 4*Rac(2) = 3 - 2*Rac(2) > 0.
On peut donc déjà déterminer les 2 solutions qui annulent l'expression du 2nd degré :
X1 = [(Rac(2) + 1) - Rac(3 - 2*Rac(2))] / (2*Rac(2))
et X2 = [(Rac(2) + 1) + Rac(3 - 2*Rac(2))] / (2*Rac(2))
avec évidemment, X1 < X2.
Le coefficient devant X^2 étant positif, cette expression est une parabole, orientée vers le haut, elle est donc positive ou nulle sur ]-infini ; X1] U [X2 ; + infini[
Ensuite, comment procéder ? Comme tu as posé X = sin(x), tu te retrouves avec des expressions horribles, en essayant d'utiliser la fonction arcsinus. Mais tu n'as pas le choix, il n'y a aucun autre moyen de s'en sortir.
L'ensemble des solutions sera donc :
S = ]-infini ; arcsin(X1)] U [arcsin(X2) ; +infini[.
Bonne soirée
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.