Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour je suis en 3ème et en math on a une super prof du coup on a pu commencé un peu le programme de seconde, mais en fait voilà je sèche sur une question d'un devoir bonus au sujet des inéquations de valeur absolue..
J'ai fais des calculs, des droites graduées, mais je trouve que [-4; +infini] comme solution, qui n'est pas bonne après vérification.

Là voici : | 2x + 4 | < 2
Trouver x
Merci par avance !

Sagot :

Réponse :

Explications étape par étape :

Bonjour

Par définition d'une valeur absolue on a :

Si 2x+4≥0 alors I2x+4I=2x+4

Si 2x+4≤0 alors I2x+4I=-2x-4

Tu peux donc traduire ton inéquation par :

-2<2x+4<2

⇔ -6<2x<-2

⇔ -3<x<-1

Et S=]-3;-1[

Ca s'illustre bien sur le graphique ci-joint.

View image slyz007

Réponse :

bonjour

Explications étape par étape

comme

valeur aboslue de (2x+4) est positive et 2 positif

on peut élever les 2 termes au carré

(2x+4)² <2²

4x²+16x+16<4

4x²+16x+16-4<0

4x²+16x+12<0

4x²+16x+12=0

polynome  second degré

Δ=16²-4*4*12

Δ=256-192

Δ=64

√Δ=8

x1=-16-8/8 x1=-24/8 x1=-3

x2= -16+8/8 x2=-8/8 x2=-1

4x²+16x+12

4>0

le signe du polynome est du signe de a sauf entre les racines

donc solution

4x²+16x+12<0

x ∈]-3;-1[

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.