Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

ABC est un triangle équilatéral de côté 12 cm et I est le milieu du segment [AB] M est un point variable du segment [AI ] et N le point du segment [AB] distinct de M tel que AM =NB Q est le point du segment [BC]et P est le point du segment [AC] tels que MNQP soit un rectangle On note f la fonction qui à x = AM (en cm) associe l'aire, en cm carrée, du rectangle MNQP a) Quel est l'ensemble de définition de f ? b) Exprimer MN, puis MP en fonction de x. En déduire l'expression algébrique de f (x) c) Calculer f (3), puis vérifier que pour tout x de [0;6[ : f(x) - f(3) = -2 racine carrée de 3 (x-3) au carrée d)EN déduire que f(3) est le maximum de f sur [0;6[ e)Quelles sont les dimensions du rectangle d'aire maximale?



Sagot :

Soit CI la hauteur du triangle ABC. le triangle CAI est rectangle---> CI² = AC² - AI² = 144-36=108

CI = 6rac(3)

Dans le triangle AIC ,PM //CI,on a donc une configuration de Thalès et PM/6rac(3) = x/6

donc PM = 6rac(3) / 6 = x . rac(3)

MN = 12 - 2x

f(x) = x . rac(3).(12-2x) = 2rac(3).(6x - x²)

de toutes façons l'ensemble de définition de f(x) est [0;6] voir la figure c'est évident

f(3) = 18rac(3)

f(x) - f(3) = 2rac(3).(6x - x²) - 18rac(3) = -2rac(3)(x² - 6x +9) = -2rac(3)(x - 3)²

le maximum de cette différence sera atteint quand  x = 3 et c'est aussi le maximum de f(x) sur [0;6]

les dimensions de ce rectangle seront 6 et 3rac(3)

 

 

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.