Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

1) On donne la fonction f définie par: f(x) = x2 + x - 2.
a) Etudier les variations de f.
b) Tracer la courbe représentative (C) de f dans un repère (0;i; j).
2) Soit la fonction g définie par : g(x) = x2 + [x] – 2.
a) Etudier la parité de la fonction g.
b) Déduire de la question 1) a) les variations et la courbe représentative de g.
Aïdez moi svp​


Sagot :

Explications étape par étape :

f(x) = x² + x - 2

Df = R

a.    f'(x) = 2x + 1

La dérivée s'annule pour x = -1/2

tableau de signes

x                       -∞                                   -1/2                                                +∞

f'(x)                                  -                         0                         +

f(x)                            décroissante        -2,25                  croissante

f(-1/2) = (-1/2)² + (-1/2) - 2

⇔ f(-1/2) = 1/4 - 1/2 - 2

⇔ f(-1/2) = -2,25

b. voir document

2/  g(x) = x² + x - 2

a.   Si la fonction est paire: g(x) = g(-x)

   g(x) = x² + x - 2

   g(-x) = ( -x)² + (-x) - 2

⇔ g(-x) = x² - x - 2

La fonction n'est pas paire donc elle n'admet pas l'axe des ordonnées comme axe de symétrie.

    Si la fonction est impaire: g(-x) = -g(x)

   g(-x) = x² - x - 2

  -g(x) = - ( x² + x - 2 )

⇔ -g(x) = -x² - x + 2

La fonction n'est pas impaire donc elle n'admet pas l'origine du repère comme centre de symétrie.

View image stellaphilippe2
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.