Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
bonjour
Explications étape par étape :
pyramide à base triangulaire
base triangle rectangle et isocèle en A (voir codage de la figureb)
le volume d'une pyramide ⇒ V = 1/3 aire de la base x hauteur
ici aire de la base ⇒ b x h(du triangle isocèle rectangle) /2
soit b= 7,5 cm et h = 7,5 cm
⇒ 7,5²/2 = 28, 125 cm²
donc le volume de cette pyramide est :
V = 1/3 x 28,125 x 15
V = 140,625 cm³ soit à l'unité 141 cm³
la nature de la section obtenue est un triangle ,réduction de la base de la pyramide soit un triangle S'MN rectangle et isocèle en S'
Le rapport de réduction est k = SS'/SA soit 6/15 = 0,4
Remarque : Dans un agrandissement ou une réduction de rapport k,les longueurs sont multiplier par k , l’aire d’une surface est multipliée par k2, et le volume d’un solide est multiplié par k3.
donc la longueur S'N = 0,4 x 7,5 = 3 cm
(donc aire de la petite base 3 x 3 /2 )
le volume maximal est :
le volume total de la pyramide - le volume du bouchon SS'MN
volume pyramide(calculé plus haut )⇒ 141 cm³
le volume du bouchon ⇒( 3 x 3/2 ) x 6 x 1/3 = 9 cm³
(tu pouvais aussi faire 141 x 0,4³= 9,024 soit 9 cm³)
donc le volume maximal ⇒ 141 - 9 = 132 cm³
bonne soirée
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.