Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Exercice 5 : Résoudre et donner les solutions exactes.
a) x2 = 10,24
b) x2 = 3
c) x² = -100
d) x² = 8,5
e) x2= 20
f) x2 - 5 =0

Aider moi svp
(Les x2 c’est des x au carré )


Sagot :

Bonjour

Identité remarquable : a^2 - b^2 = (a - b)(a + b)

Et un produit de facteurs est nul si et seulement si au moins un de ses facteurs est nul.

Résoudre et donner les solutions exactes.

a) x2 = 10,24

x^2 - 10,24 = 0

x^2 - 3,2^2 = 0

(x - 3,2)(x + 3,2) = 0

x - 3,2 = 0 ou x + 3,2 = 0

x = 3,2 ou x = -3,2

b) x2 = 3

x^2 - 3 = 0

[tex]x^{2} - (\sqrt{3})^{2} = 0[/tex]

[tex](x - \sqrt{3})(x + \sqrt{3}) = 0[/tex]

[tex]x - \sqrt{3} = 0[/tex] ou [tex]x + \sqrt{3} = 0[/tex]

[tex]x = \sqrt{3}[/tex] ou [tex]x = -\sqrt{3}[/tex]

c) x² = -100

x^2 < 0 donc pas de solution car un carré est toujours positif

d) x² = 8,5

x^2 - 8,5 = 0

[tex](x - \sqrt{8,5})(x + \sqrt{8,5}) = 0[/tex]

[tex]x - \sqrt{8,5} = 0[/tex] Ou [tex]x + \sqrt{8,5} = 0[/tex]

[tex]x = \sqrt{8,5}[/tex] ou [tex]x = -\sqrt{8,5}[/tex]

e) x2= 20

x^2 - 20 = 0

[tex](x - \sqrt{20})(x + \sqrt{20}) = 0[/tex]

[tex]x - \sqrt{20} = 0[/tex] Ou [tex]x + \sqrt{20} = 0[/tex]

[tex]x = \sqrt{20}[/tex] ou [tex]x = -\sqrt{20}[/tex][tex]x = 2\sqrt{5}[/tex] ou [tex]x = -2\sqrt{5}[/tex]

f) x2 - 5 =0

[tex](x - \sqrt{5})(x + \sqrt{5}) = 0[/tex]

[tex]x - \sqrt{5} = 0[/tex] ou [tex]x + \sqrt{5} = 0[/tex]

[tex]x = \sqrt{5}[/tex] ou [tex]x = -\sqrt{5}[/tex]

Dav838

Réponse :

Salut ,

X²=10,24

X²=256/25

X=-16/5

X=16/5

L'équation a deux solutions -16/5 et 16/5

X²=3

X=- [tex]-\sqrt{3}[/tex]

X=[tex]\sqrt{3}[/tex]

L'équation a deux solutions [tex]-\sqrt{3}[/tex] et [tex]\sqrt{3[/tex]

X²=-100

Impossible

X²=8,5

X²=17/2

X=[tex]-\sqrt{34/2}[/tex]

X=[tex]\sqrt{34/2}[/tex]

L'équation a deux solutions [tex]-\sqrt{34/2}[/tex] et [tex]\sqrt{34/2}[/tex]

X²=20

X=-2[tex]\sqrt{5}[/tex]

X=2[tex]\sqrt{5}[/tex]

L'équation a deux solutions -2[tex]\sqrt{5}[/tex] et [tex]\sqrt{5}[/tex] 2

X²-5=0

X²=5

X=-[tex]\sqrt{5}[/tex]

X=[tex]\sqrt{5}[/tex]

L'équation a deux solutions -[tex]\sqrt{5}[/tex] et [tex]\sqrt{5}[/tex]

Courage !

Explications étape par étape :