Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonsoir, j'ai eu quelques difficulté à résoudre la question 1B dans l'exercice présent. J'aurais vraiment besoins d'aide, car cette question est cruciale pour le reste de l'exercice. Je vous remercie encore d'avance quant à votre réponse, je galère depuis près de 4 heures, assez long pour une simple question... Merci beaucoup ;)

Exercice 2 : Sécurité routière

Lors d’une soirée, Arthur a bu à jeun une certaine quantité d’alcool. On s’intéresse à son taux d’alcool dans le sang, exprimé en g.L-1, en fonction du temps t, exprimé en heures.

Comme il faut un certain temps pour que le corps absorbe l’alcool, on peut modéliser son taux d’alcool par une fonction f définie sur [0,05; +[.

On admet que f est solution de l’équation différentielle (E) : y' = -y + ke(-t), où k est une constante positive qui dépend de la quantité d’alcool absorbée et de la corpulence de l’individu.

1) a) Exprimer, en fonction de k, le nombre réel a tel que la fonction g définie sur [0 ; +∞[ par g(t) = ate(-t) soit une solution particulière de (E).

b) En déduire l’expression de f(t) en fonction de k.

2) Etudier le sens de variation de la fonction f et vérifier qu’il ne dépend pas de k.

3) Au bout de 3 heures, Arthur teste son alcoolémie et obtient un taux égal à 0,8 g.L-1.
Sachant que Arthur est un jeune conducteur et que, selon la loi française, le taux maximal autorisé pour les jeunes conducteurs est de 0,2 g.L-1, combien de temps devra-t-il encore patienter pour pouvoir prendre le volant et rentrer chez lui ? On donnera un résultat à la minute près, on pourra utiliser la méthode par balayage pour trouver une valeur approchée du résultat.

Sagot :

Explications étape par étape:

Bonsoir, idéalement il te faudrait indiquer tes réponses, ainsi que ton raisonnement pour le 1a. Autrement, cela oblige ceux qui veulent t'aider à résoudre les questions précédentes.

1a- Soit g définie sur [0 ; +infini[, solution particulière de E, telle que g(t) = ate(-t).

En premier lieu, g est derivable sur son ensemble de définition, et pour tout x € R+, g'(t) = a*[e(-t) - t*e(-t)] = a*e(-t) - g(t).

On injecte cette expression dans l'équation différentielle :

g' = -g + ke(-t), donc g' + g = ke(-t).

Ainsi : a*e(-t) - g(t) + g(t) = ke(-t).

On conclut que k = a.

1b- Ici, résolution classique d'une équation différentielle. Il faut résoudre l'équation homogène associée, soit Eh : f' + f = 0.

D'où f' = - f, il est alors évident que f(t) = z*exp(-t) est solution de l'équation, avec z un réel.

Par conséquent, l'ensemble des solutions de cette équation est constitué de la somme de la solution particulière, ainsi que celle de l'équation homogène.

Finalement : f(t) = z*exp(-t) + kte(-t) = z*exp(-t) + g(t) avec k € R+.

On peut vérifier : f'(t) = -z*exp(-t) + k*[e(-t) - t*e(-t)] = - z*exp(-t) + k*e(-t) - g(t).

Donc f'(t) + f(t) = - z*exp(-t) + k*e(-t) - g(t) + z*exp(-t) + g(t) = ke(-t).

Il ne faut surtout pas oublier que le but, c'est avant tout de résoudre l'équation différentielle, dont f est solution. Sachant que la solution d'une équation de degré 1 constitue toujours la somme de la solution particulière, ainsi que l'homogène, tu peux "prédire" qu'il y aura un lien entre les 2.

Bonne soirée

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.