Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour aidez-moi svp niveau 2nde

1) Soit un repère orthonormé (O; i; j) et les vecteurs u (−2+4√2 ; 1 ) et v (−2+√2 ;√2)

Calculer le déterminant de ( u; v).

2) Soit un repère orthonormé ( O ; i ; j ).
Soit deux points A ( -4 ; -2 ) et B ( 1 ; 4 ).
Soit un point M( x ; y ) tel que :

AM = −3 BM

Déterminer les coordonnées du point M. Que vaut x ? Que vaut y ?

3) Soit le vecteur u ( -7 ; -4) et les points A (8 ; 4) et B (x ;−12)
Déterminer la valeur de x pour que les vecteurs u et AB soient colinéaires.


Sagot :

caylus

Bonjour,

1)

[tex]\overrightarrow{u}=\left(\begin{array}{c}-2+4\sqrt{2}\\ 1\end{array}\right)\\\\\overrightarrow{v}=\left(\begin{array}{c}-2+\sqrt{2}\\ \sqrt{2}\end{array}\right)\\\\\\det(\overrightarrow{u},\overrightarrow{v})=\begin{bmatrix}-2+4\sqrt{2} & -2+\sqrt{2} \\1 & \sqrt{2} \end{bmatrix}\\\\=-2\sqrt{2} +4*2 +2 -\sqrt{2}\\\\=10-3+\sqrt{2}\\[/tex]

2)

[tex]A=(-4,-2)\\B=(1,4)\\\\\overrightarrow{AB}=\left(\begin{array}{c}1+4\\4+2\end{array}\right)=\left(\begin{array}{c}5\\6\end{array}\right)\\\\\overrightarrow{AM}=-3*\overrightarrow{BM} \\\\\Longrightarrow \overrightarrow{AM}+\overrightarrow{MB}=-3*\overrightarrow{BM}+\overrightarrow{MB}\\\\\overrightarrow{AB}=-4*\overrightarrow{BM} \\\\\overrightarrow{BM}=\dfrac{-\overrightarrow{AB}}{4}\\\\[/tex]

[tex]\overrightarrow{BM}=\left(\begin{array}{c}x-1\\y-4\end{array}\right)=-\frac{1}{4} \left(\begin{array}{c}5\\ 6\end{array}\right)\\\\x=1+\dfrac{-5}{4} \\y=4-\dfrac{6}{4} \\\\\boxed{x=\dfrac{-1}{4} }\\\boxed{y=\dfrac{11}{2} }\\[/tex]

3)

[tex]\overrightarrow{u}=\left(\begin{array}{c}-7\\ -4\end{array}\right)\\\\A=(8,4)\\B=(x,-12)\\\overrightarrow{AB}=\left(\begin{array}{c} x-8\\ -12-4\end{array}\right)\\\\\\\overrightarrow{u}=k*\overrightarrow{AB}\\\\\left\{\begin{array}{ccc}k*(x-8)&=&-7\\k(-16)&=&-4 \\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}k&=&\dfrac{1}{4}\\\\x&=&-20\\\end{array}\right.\\[/tex]

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.