Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour,
Je sollicite votre aide, car je rencontre des difficultés sur les limites, mais aussi les variations de cette fonction. Cet exercice doit être accompagné d’explications et de justifications. Seulement, sans avoir réussi, il est complexe de l’expliquer.

Si vous avez la patiente de m’expliquer cet exercice et surtout les limites, je vous en serais très reconnaissante.


Bonjour Je Sollicite Votre Aide Car Je Rencontre Des Difficultés Sur Les Limites Mais Aussi Les Variations De Cette Fonction Cet Exercice Doit Être Accompagné D class=

Sagot :

Réponse :

Explications étape par étape :

View image olivierronat
Svant

Réponse :

En -∞ :

[tex]x^2+3x+4=x^2(1+\frac{3}{x} +\frac{4}{x^2} )\\ \lim_{x \to -\infty} x^2=+\infty\\ \lim_{x \to -\infty} (1+\frac{3}{x} +\frac{4}{x^2} )=1\\[/tex]

donc par produit des limites

[tex]\lim_{x \to -\infty} (x^2+3x+4)=+\infty[/tex]

[tex]\lim_{X \to +\infty} (lnX)=+\infty[/tex]

donc par composée

[tex]\lim_{x \to -\infty} ln(x^2+3x+4)=+\infty[/tex]

En +∞ :

[tex]\lim_{x \to +\infty} x^2=+\infty\\ \lim_{x \to +\infty} (1+\frac{3}{x} +\frac{4}{x^2} )=1\\[/tex]

donc par produit des limites

[tex]\lim_{x \to +\infty} (x^2+3x+4)=+\infty[/tex]

[tex]\lim_{X \to +\infty} (lnX)=+\infty[/tex]

donc par composée

[tex]\lim_{x \to +\infty} ln(x^2+3x+4)=+\infty[/tex]

2.

x²+3x+4 > 0 sur R  (Δ=-7)

donc f est dérivable sur R.

f est de la forme ln(u) avec u(x) = x²+3x+4  et u'(x) = 2x+3

[tex]f'(x)=\frac{2x+3}{x^2+3x+4}[/tex]

x²+3x+4 est strictement positif sur R donc f'(x) à le même signe que 2x+3

2x+3 ≥0

2x≥-3

x≥-3/2

Ainsi sur ]-∞; -3/2], f'(x) est négative donc f est décroissante.

Sur [-3/2; +∞[, f'(x) est positive donc f est croissante.

f(-3/2) = ln(7/4)

Explications étape par étape :

View image Svant
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.