Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Réponse :
En -∞ :
[tex]x^2+3x+4=x^2(1+\frac{3}{x} +\frac{4}{x^2} )\\ \lim_{x \to -\infty} x^2=+\infty\\ \lim_{x \to -\infty} (1+\frac{3}{x} +\frac{4}{x^2} )=1\\[/tex]
donc par produit des limites
[tex]\lim_{x \to -\infty} (x^2+3x+4)=+\infty[/tex]
[tex]\lim_{X \to +\infty} (lnX)=+\infty[/tex]
donc par composée
[tex]\lim_{x \to -\infty} ln(x^2+3x+4)=+\infty[/tex]
En +∞ :
[tex]\lim_{x \to +\infty} x^2=+\infty\\ \lim_{x \to +\infty} (1+\frac{3}{x} +\frac{4}{x^2} )=1\\[/tex]
donc par produit des limites
[tex]\lim_{x \to +\infty} (x^2+3x+4)=+\infty[/tex]
[tex]\lim_{X \to +\infty} (lnX)=+\infty[/tex]
donc par composée
[tex]\lim_{x \to +\infty} ln(x^2+3x+4)=+\infty[/tex]
2.
x²+3x+4 > 0 sur R (Δ=-7)
donc f est dérivable sur R.
f est de la forme ln(u) avec u(x) = x²+3x+4 et u'(x) = 2x+3
[tex]f'(x)=\frac{2x+3}{x^2+3x+4}[/tex]
x²+3x+4 est strictement positif sur R donc f'(x) à le même signe que 2x+3
2x+3 ≥0
2x≥-3
x≥-3/2
Ainsi sur ]-∞; -3/2], f'(x) est négative donc f est décroissante.
Sur [-3/2; +∞[, f'(x) est positive donc f est croissante.
f(-3/2) = ln(7/4)
Explications étape par étape :
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.