Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour
Soit une pyramide régulière à base carrée de coté
10m et d'arête latérale 11m.

Donner la hauteur de la pyramide.
On arrondira le résultat au milimètre près.
Merci


Sagot :

Salut ! J’ai mis un schéma pour que tu comprennes mieux :)
Pour trouver la hauteur tu dois utiliser Pythagore pour trouver la longueur OS (voir schéma).
Cependant pour utiliser le théorème il te faut la longueur du côté AO de ton triangle rectangle. Pour cela, tu calcules avec Pythagore la longueur de l’hypothénuse AC :
AC^2 = AB^2 + BC^2
AC^2 = 10^2 + 10^2
AC^2 = 100 + 100
AC^2 = 200
AC = √200
AC ≈ 14, 142 m

On a besoin de la longueur AO qui est donc la moitié de AC. Donc AO = AC ÷ 2 = 14,142 ÷ 2 = 7,071 m.

Ensuite tu peux calculer la hauteur de ta pyramide avec Pythagore :
SO^2 = AS^2 - AO^2
SO^2 = 11^2 - 7,071^2
SO^2 = 121 - 49,999
SO^2 = 71,001
SO = √71,001
SO ≈ 8,426 m

SO ≈ 8,426 m donc la hauteur de la pyramide est environ 8,426m de haut.

Bonne continuation ^^ !
View image Lisounyan

Réponse :

Explications étape par étape :

Soit O le centre du carré de base, ABCD les sommets de ce carré et S le sommet de la pyramide

La diagonale AC =[tex]10\sqrt{2}[/tex] (Théorème de Pythagore dans le triangle ABC)

SA = 11 et OA =[tex]5\sqrt{2}[/tex]

Dans le triangle rectangle AOS, [tex]AO^2+OS^2=SO^2[/tex] donc

[tex]OS^2=SA^2\,-\,AO^2[/tex]

[tex]SO^2=121\,-\,50=71[/tex]

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.