Answered

Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, je suis en seconde et je suis bloquée pour cet exercice. Merci

(O; i, j ) est un repère orthonormé du plan. On place un point M sur l'axe des abscisses et un point N sur l'axe des ordonnées. On appelle α l'abscisse de M et β l'ordonnée de N. On suppose que α et β sont tous les deux non nuls. Soit d et d′ les droites d'équation respective x−y+1=0 et y=2x.

1. Déterminer, en fonction de α et β , une équation cartésienne de la droite (MN).
2. Déterminer une condition sur les réels α et β pour que la droite (MN) soit parallèle à la droite d.

3. a. Déterminer une condition sur les réels α et β pour que la droite (MN) soit sécante à la droite d′.

b. On suppose 2α+β différent de 0. Exprimer en fonction de α et β les coordonnées du point d’intersection T des droites (MN) et d'.


Sagot :

Réponse :

1) déterminer, en fonction de α et β une équation cartésienne de la droite (MN)

soit  A(x ; y) tel que les vecteurs MA et MN soient colinéaires c'est à dire XY' - YX' = 0

vec(MA) = (x - α ; y)

vec(MN) = (- α ; β)

XY' - YX' = 0  ⇔ (x - α)*β - y(-α) = 0 ⇔ β x + α y - αβ = 0

2) déterminer une condition sur les réels α et β pour que la droite (MN) soit parallèle à la droite  d

u : vecteur directeur de (MN) est :  vec(u) = (- α ; β)

v :   //              //         //     d    est :    vec(v) = (1 ; 1)

(MN) // d  ⇔ les vecteurs u et v sont colinéaires  ⇔ - α - β = 0

⇔ α = - β

3) vec(u) = (- α ; β)

   vec(v) = (- 1 ; - 2)

la droite (MN) est sécante à la droite d'  ⇔ les vecteurs u et v ne sont pas colinéaires  ⇔ XY' - YX' ≠ 0  ⇔ - (α)*(-2) - β*(-1) ≠ 0  ⇔ 2 α + β ≠ 0

b) on suppose 2α+β≠ 0, exprimer en fonction de α et β les coordonnées

du point d'intersection T des droites (MN) et d'

(MN) :   β x + α y - αβ = 0  ⇔ y = - β/α) x + β

d'     : y = 2 x

- β/α) x + β = 2 x  ⇔ β = 2 x + β/α) x  ⇔ (2α + β)/α) x = β

⇔ x = αβ/(2α+ β)   et y = 2αβ/(2α+β)

T(αβ/(2α+ β) ; 2αβ/(2α+β))

Explications étape par étape :

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.