Answered

Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

C est un exercice sur la chapitre des fonctions exponentielles. Une entreprise fabrique des vis au moins 6tonnes par mois. Le coût moyen de fabrication en millier d'euros par tonne,d'une production mensuelle de x tonnes est donné par C(x), où C est la fonction définie sur ]0;6] par: C(x)= (0.1e^x+20) / x . L'exercice est en plusieurs étapes,d'une part il à l'aide de la calculatrice: -conjecturer en termes de variation, l'évolution du coût moyen de fabrication dur l'intervalle ]0;6] -estimer le minimum du coût moyen et la production mensuelle correspondante -dire s'il est possible d'atteindre un coût moyen de fabrication de 4000 euros par tonne (en précisant la méthode utilisée). Apres, il faut montrer que,pour tout reel x appartenant à ]0;6] : C'(x)= (0.1x e^x - 0.1e^x-20) / x^2 -On considère la fonction f definie su [0;6]: f(x)= 0.1x e^x -0.1e^x -20. -Verifier que pour tout réel de [0;6]: f'(x)=0.1x e^x. -Justifier que la fonction f est strictement croissante sur l'intervalle [0;6] -Montrer que pour l'equation f(x)=0 admet une seule solution dans [0;6] (donner la valeur de cette solution arrondie au dixieme près) - En deduire le signe de f(x) sur [0,6] -A l'aide des questions precedentes,justifier que le minimum du cout moyen de fabrication est obtenu pour une production mensuelle de " " tonnes de vis(" " correspond a la seule solution trouvée auparavant) . -Justifier que C(seule solutuion) = 0.1 e^(seule solution)



Sagot :

si C(x)= (0.1e^x+20) / x  alors C'(x)= ((0,1e^x*x-0,1*e^x-20)/x^2 CQFD ((u'v-uv')/v^2)

 

sur 0,6 x est >0 et e^x est >0 donc f' egalement, f croit

comme f(0)=-0,1-20 <0 et f(6)=0,5e^6-20 >0  le TVI donne ne solution de f(x)=0 sur cet intervalle

 

Notons a cette valeur : 0,1*a*e^a-0,1*e^a-20=0 soit 0,1*a*e^a=0,1*e^a+20

 alors C(a)=(0,1*e^a+20)/a vaut 0,1*e^a

 

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.