Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonjour, besoin d'aide pour un exercice de maths
considère deux droites d, et dy:
d, a pour équation - 4x + 3y +1=0;
d, passe par le point A(0;-1) et a pour pente 2.
1. Démontrer que les droites d, et d, sont sécantes.
2. On appelle Kleur point d'intersection.
Déterminer les coordonnées du point K.
Capacité 10, p. 189​


Sagot :

Réponse :

Bonjour

Explications étape par étape :

Je nomme :

d1 : -4x+3y+1=0 qui donne : y=(4/3)x-1/3

d2 passe par A(0;-1) et a pour pente 2.

1)

Pente de d1 : 4/3 ≠ 2

Donc droites sécantes.

Ou l'on peut raisonner aussi  ainsi :

Un vecteur directeur de d2 est (1;2).

Dans l'équation : ax+by+c=0 , un vecteur directeur est (-b;a).

Donc pour d2 : a=2 et b=-1

d2 ==>2x-y+c=0

Passe par A(0;-1) qui donne :

2*0-(-1)+c=0 ==>c=-1

d2 : 2x-y-1=0

Et :

d1 : -4x+3y+1=0

det(d1,d2)=2*3-(-1)(-4)=6-4=2 ≠ 0

Donc d1 et d2 sécantes.

2)

On résout :

{2x-y-1=0

{-4x+3y+1=0

La 1ère donne y=2x-1 à reporter dans la 2ème :

-4x+3(2x-1)+1=0

2x=2

x=1

y=2*1-1=1

K(1;1)

View image Bernie76
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.