Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Réponse :
f' est dérivable sur [0;2] (composition de fonctions dérivables sur [0;2]).
[tex]f''(x) = ((1-x)e^{-x})'\\f''(x)=(1-x)'e^{-x}+(1-x)(e^{-x})'\\f''(x)=-e^{-x}-(1-x)e^{-x}\\f''(x)=(-1-(1-x))e^{-x}\\f''(x)=(-2+x)e^{-x}[/tex]
Or, [tex]e^x>0[/tex]. De plus :
[tex]0\leq x\leq 2\\-2\leq -2+x\leq 0[/tex]
Donc [tex]-2+x\leq 0[/tex], ce qui implique que [tex](-2+x)e^{-x}\leq 0[/tex]
La dérivée seconde de f est négative sur [0;2], donc f est concave sur [0;2].
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.