Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
bonsoir
Explications étape par étape :
g(x)=(x²-2x+7)/(-2x+3)
1) g(x) est une fonction quotient et comme tu l'as appris la division par 0 est impossible (interdite) donc la valeur qui annule le diviseur est une valeur interdite. -2x+3= 0 pour x=3/2 (double trait dans le tableau)
donc Df=R-{3/2} (réponse donnée dans l'énoncé)
2)La dérivée d'une fonction quotient f(x)=u/v est f'(x)=(u'v-v'u)/v² formule à connaître.
dans ton exercice u=x²-2x+7 u'=2x-2
v=-2x+3 v'=-2
g'(x)=[(2x-2)(-2x+3)+2(x²-2x+7))/(-2x+3)²=(-2x²+6x+8)/(-2x+3)² (réponse donnée dans l'énoncé).
3) Le signe de la dérivée g'(x) dépend uniquement du signe de -2x²+6x+8
On résout -2x²+6x+8=0 ou (-x²+3x+4)=0
Via delta=25
solutions x1=-1 et x²=4
on en déduit le signe de g'(x) ;voir règle concernant le signe du polynôme du 2d degré en fonction du signe de "a" et des racines du polynôme (COURS)
Avant de dresser le tableau il nous faut les limites aux bornes du Df
Si x tend vers -oo, g(x) tend vers x/-2=+oo
Si x tend vers +oo g(x) tend vers x/-2=-oo
Si x tend vers 3/2 (avec x<3/2) g(x)tend vers +oo
si x tend vers 3/2 (avec x>3/2) , g(x) tend vers -oo
Tableau de signes de g'(x) et de variations de g(x)
x -oo -1 3/2 +4 +oo
g'(x) - 0 + + 0 -
g(x) +oo......D......g(-1).....C........+oo II-oo.......C......g(4)..........D............-oo
Calcule g(-1) et g(4)
La droite x=3/2 est une asymptote verticale.
****************************
Si tu effectues la division euclidienne (x²-2x+7) par (-2x+3) tu vas trouver un quotient q=ax+b et un reste c donc g(x)=ax+b+ c/(-2x+3)
la droite d'équation y=ax+b est une asymptote oblique. (non demandé)
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.