Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

BONJOUR AIDEZ MOI SVP ça comptera pour mon bac.
Je suis en 1e spé maths et ça devient très compliqué...
Merci pour votre aide!
Vous trouverez l'exo en pièce jointe.


BONJOUR AIDEZ MOI SVP Ça Comptera Pour Mon Bac Je Suis En 1e Spé Maths Et Ça Devient Très Compliqué Merci Pour Votre Aide Vous Trouverez Lexo En Pièce Jointe class=

Sagot :

Réponse :

Explications étape par étape :

voila

View image ihabjl7
View image ihabjl7

Réponse :

bonsoir

Explications étape par étape :

g(x)=(x²-2x+7)/(-2x+3)

1) g(x) est une fonction quotient et comme tu l'as appris la division par 0 est impossible (interdite) donc la valeur qui annule le diviseur est une valeur interdite.   -2x+3= 0 pour x=3/2  (double trait dans le tableau)

donc Df=R-{3/2} (réponse donnée dans l'énoncé)

2)La dérivée d'une fonction quotient f(x)=u/v  est f'(x)=(u'v-v'u)/v²   formule à connaître.

dans ton exercice u=x²-2x+7   u'=2x-2

v=-2x+3   v'=-2

g'(x)=[(2x-2)(-2x+3)+2(x²-2x+7))/(-2x+3)²=(-2x²+6x+8)/(-2x+3)² (réponse donnée dans l'énoncé).

3) Le signe de la dérivée g'(x) dépend uniquement du signe de -2x²+6x+8

On résout -2x²+6x+8=0  ou (-x²+3x+4)=0

Via delta=25

solutions x1=-1 et x²=4

on en déduit le signe de g'(x) ;voir règle concernant le signe du polynôme du 2d degré en fonction du signe de "a" et des racines du polynôme (COURS)

Avant de dresser le tableau il nous faut les limites aux bornes du Df

Si x tend vers -oo, g(x) tend vers x/-2=+oo

Si x tend vers +oo g(x) tend vers x/-2=-oo

Si x tend vers 3/2 (avec x<3/2) g(x)tend vers +oo

si x tend vers 3/2 (avec x>3/2) , g(x) tend vers -oo

Tableau de signes de g'(x) et de variations de g(x)

x    -oo                  -1                       3/2                  +4                      +oo

g'(x)             -          0        +                   +               0           -

g(x)   +oo......D......g(-1).....C........+oo II-oo.......C......g(4)..........D............-oo

Calcule g(-1) et g(4)

La droite  x=3/2 est une asymptote verticale.

                                 ****************************

Si tu effectues la division euclidienne (x²-2x+7) par (-2x+3) tu vas trouver un quotient q=ax+b et un reste c donc g(x)=ax+b+ c/(-2x+3)

la droite d'équation y=ax+b est une asymptote oblique. (non demandé)

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.