Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Réponse :
bonsoir
Explications étape par étape :
g(x)=(x²-2x+7)/(-2x+3)
1) g(x) est une fonction quotient et comme tu l'as appris la division par 0 est impossible (interdite) donc la valeur qui annule le diviseur est une valeur interdite. -2x+3= 0 pour x=3/2 (double trait dans le tableau)
donc Df=R-{3/2} (réponse donnée dans l'énoncé)
2)La dérivée d'une fonction quotient f(x)=u/v est f'(x)=(u'v-v'u)/v² formule à connaître.
dans ton exercice u=x²-2x+7 u'=2x-2
v=-2x+3 v'=-2
g'(x)=[(2x-2)(-2x+3)+2(x²-2x+7))/(-2x+3)²=(-2x²+6x+8)/(-2x+3)² (réponse donnée dans l'énoncé).
3) Le signe de la dérivée g'(x) dépend uniquement du signe de -2x²+6x+8
On résout -2x²+6x+8=0 ou (-x²+3x+4)=0
Via delta=25
solutions x1=-1 et x²=4
on en déduit le signe de g'(x) ;voir règle concernant le signe du polynôme du 2d degré en fonction du signe de "a" et des racines du polynôme (COURS)
Avant de dresser le tableau il nous faut les limites aux bornes du Df
Si x tend vers -oo, g(x) tend vers x/-2=+oo
Si x tend vers +oo g(x) tend vers x/-2=-oo
Si x tend vers 3/2 (avec x<3/2) g(x)tend vers +oo
si x tend vers 3/2 (avec x>3/2) , g(x) tend vers -oo
Tableau de signes de g'(x) et de variations de g(x)
x -oo -1 3/2 +4 +oo
g'(x) - 0 + + 0 -
g(x) +oo......D......g(-1).....C........+oo II-oo.......C......g(4)..........D............-oo
Calcule g(-1) et g(4)
La droite x=3/2 est une asymptote verticale.
****************************
Si tu effectues la division euclidienne (x²-2x+7) par (-2x+3) tu vas trouver un quotient q=ax+b et un reste c donc g(x)=ax+b+ c/(-2x+3)
la droite d'équation y=ax+b est une asymptote oblique. (non demandé)
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.