Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

On considère la fonction f définie par f(x)=xe^(-x).

1. etudier les variations de f et dresser son tableau de variation.

 

2. Soit la suite (un) définie par u0=1 et pour tout entier natureln, u(n+1)=f(un).

 

a. montrer que, pour tout n de N, on a (un) supérieur à 0.

b. Déterminer le sens de variation de la suite (un).

c. etudier la convergence de la suite (un) et préciser sa limite.



Sagot :

f'(x)=e^(-x)-xe^(-x)=(1-x)e^-x est du signe de 1-x

 

ainsi sur ]-inf, 1], f croit de -inf  à 1/e et sur [1,+inf] elle decroit de 1/e à 0

 

si u0=1 u1=f(1) est positif et si Un est positif, U(n+1) est positif : la recurrence est verifiée.

 

Un decroit comme f

 

elle est minorée par 0 donc elle admet une limite. Et cette limite est 0 car elle verifie l=f(l)

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.