Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Réponse :
f(x)=4x²-3 définie sur R.
1) images de -2 et 1
il suffit de remplacer x par -2 et 1, calculer
image de -2 : 4*(-2)²-3 = 4*4-3 = 13
meme demarche pour 1
2) antécedents de -3puis6 par f
tu resous 4x²-3=.-3
4x²=-3+3
x=0
antécedent de -3 : 0
meme demache pour 6
Explications étape par étape :
Bonjour,
1. Calculer l'image de -2 par la fonction f revient à calculer f(-2):
-2 est l'antécédent de f(-2) par la fonction f et f(-2) est l'image de -2 par la fonction f il faut donc calculer f(-2) et f(1):
f(-2) = 4*(-2)² - 3 = 4*4 - 3 = 16 - 3 = 13
f(1) = 4*1² - 3 = 4*1 - 3 = 4 - 3 = 1
Donc 1 est l'image de 1 par la donction f et 13 est l'image de -2 par la fonction f
2. Calculer l'antécédent de -3 par la fonction f revient donc à résoudre:
f(x) = -3 et on remplace f(x)
4x² - 3 = -3 puis on résoud
4x² = 0 donc x = 0
Meme chose pour 6:
f(x) = 6
4x² - 3 = 6
4x² = 9
x² = 9/4 donc x = [tex]\sqrt{\frac{9}{4} } = \frac{3}{2}[/tex] ou bien x = [tex]-\sqrt{\frac{9}{4} } =-\frac{3}{2}[/tex]
L'antécédent de -3 par la fonction f est 0 et les antécédents de 6 par la fonction f sont 1,5 et -1,5
3. Pour montrer que 3 est le minimum de f sur R pour x=3 il faut normalement réaliser un tableau de signe de la dérivé de f pour ensuite faire le tableau de variation de f mais si tu n'as pas vu ça puisque tu dois etre en 2nd on va le démontrer autrement:
un carré est tjrs positifs car positif*positif = positif et négatif*négatif=positif
donc x² >= 0 donc 4x² >= 0 la valeur la plus petite que 4x² puisse prendre est 0 pour cela il faut x=0 or si x=0 alors f(x) = -3
donc le minimum de la fonction f sur R est -3 pour x=0
Bonne journée :D
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.