Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
1)
La première dérivée de la fonction f est : f'(x), Insérez n'importe quelle valeur a pour x dans f' et le résultat sera la pente de la droite tangente de f(x) au point où x = a.
Dans notre cas, la dérivée f(x) est y' et l'ordonnée de la fonction f(x) est y.
La pente de la tangente soit égale au carré de l’ordonnée de ce
point, ce qui donne l'équation différentielle y' = y².
Donc il faut chercher toutes les solutions, définies sur un intervalle, qui satisfont cette équation.
2)
y' / y² = 1
L’intégrale de 1 = x + C avec C constante ∈ R
y' / y² forme (u'v - uv')/v² = u/v si u=-1 et v=y(x), la dérivé est par rapport à x.
Vérifions : (-1 / y)' = (0*y - (-1)*y') / y² = y' / y²
L'intégrale de y' / y² est ( -1 / y )
-1 / y = x + C
-1 = yx + yC
-1 = y ( x + C)
y = -1 / ( x + C)
donc la fonction est y = -1/( x + C) avec I ∈ R / { -C } --> Pour le domaine voir un modérateur ou je pense R
3) 1 = -1 / ( 0 + C)
1 = -1 / C
C= - 1
Pour C=-1 la fonction est f(x) = -1 / ( x - 1 )
si x=0 f(0)=1 OK
Cf. représentation graphique
Sujet intéressant pour introduire les équations différentielles.
Bon courage

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.