Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Bonjour,
1)
La première dérivée de la fonction f est : f'(x), Insérez n'importe quelle valeur a pour x dans f' et le résultat sera la pente de la droite tangente de f(x) au point où x = a.
Dans notre cas, la dérivée f(x) est y' et l'ordonnée de la fonction f(x) est y.
La pente de la tangente soit égale au carré de l’ordonnée de ce
point, ce qui donne l'équation différentielle y' = y².
Donc il faut chercher toutes les solutions, définies sur un intervalle, qui satisfont cette équation.
2)
y' / y² = 1
L’intégrale de 1 = x + C avec C constante ∈ R
y' / y² forme (u'v - uv')/v² = u/v si u=-1 et v=y(x), la dérivé est par rapport à x.
Vérifions : (-1 / y)' = (0*y - (-1)*y') / y² = y' / y²
L'intégrale de y' / y² est ( -1 / y )
-1 / y = x + C
-1 = yx + yC
-1 = y ( x + C)
y = -1 / ( x + C)
donc la fonction est y = -1/( x + C) avec I ∈ R / { -C } --> Pour le domaine voir un modérateur ou je pense R
3) 1 = -1 / ( 0 + C)
1 = -1 / C
C= - 1
Pour C=-1 la fonction est f(x) = -1 / ( x - 1 )
si x=0 f(0)=1 OK
Cf. représentation graphique
Sujet intéressant pour introduire les équations différentielles.
Bon courage
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.