Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
dérive et étudie la concavité
si la dérivé 1ere est positive alors la fonction est croissante (étude du signe de la f ')
puis il faut étudier la concavité le signe de la dérivé seconde dépend si en fonction de la croissance de la dérivée première
là je pense qu'il faudrait tracer ta fonction f voir ou elle est positive pour voir la concvité de ta fonction.
si f est positive alors f '' est positive et f' est croissant
si tu dérive donc
tu as f '(x)= e^x -1
f ' (x) doit etre égal à 0 pour trouver un max ou un min
=ln e^x -ln1=0
ln et e s'annule
x= ln 1 tu as ici un point à tangente honrizontale max ou min
x=0
lorsque x > 0 fonction croissante
x<0 fonction est décroissante
ensuite
f(x) = e^x-x=0 par propriété de l'exponentielle e^x=0 à une lim en 0 à -l'infini :)
il est impossible que celà soit égal à 0
Or la fonction est possitive pour tout x appartenant à R à l'aide du graphe c'est facile à voir
donc on en conclue que e^x> x
ensuite tu sais que f est toujours positive donc sa dérivé(f') est toujours croissante
pour savoir que c'est un minimum , il faut tracer la fonction en quelque point
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.