Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
dérive et étudie la concavité
si la dérivé 1ere est positive alors la fonction est croissante (étude du signe de la f ')
puis il faut étudier la concavité le signe de la dérivé seconde dépend si en fonction de la croissance de la dérivée première
là je pense qu'il faudrait tracer ta fonction f voir ou elle est positive pour voir la concvité de ta fonction.
si f est positive alors f '' est positive et f' est croissant
si tu dérive donc
tu as f '(x)= e^x -1
f ' (x) doit etre égal à 0 pour trouver un max ou un min
=ln e^x -ln1=0
ln et e s'annule
x= ln 1 tu as ici un point à tangente honrizontale max ou min
x=0
lorsque x > 0 fonction croissante
x<0 fonction est décroissante
ensuite
f(x) = e^x-x=0 par propriété de l'exponentielle e^x=0 à une lim en 0 à -l'infini :)
il est impossible que celà soit égal à 0
Or la fonction est possitive pour tout x appartenant à R à l'aide du graphe c'est facile à voir
donc on en conclue que e^x> x
ensuite tu sais que f est toujours positive donc sa dérivé(f') est toujours croissante
pour savoir que c'est un minimum , il faut tracer la fonction en quelque point
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.