Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour, pouvez m'aider à répondre à deux questions pour devoir de Maths s'il vous plaît...
On sait que f(x) = (1-2x)^2 -9
1) montrer algébriquement par l'équation suivante : f(x) =0
2) montrer algébriquement par l'inéquation suivante : f(x) < 0

Merci d'avance

Sagot :

Réponse :

1) X1 = [tex]1+\frac{\sqrt{26}}{4}[/tex]         et   X2 = [tex]1- \frac{\sqrt{26}}{4}[/tex]

2) f(x) < 0 entre [x1;x2]

Explications étape par étape :

f(x) = (1-2x)^2 -9

on développe avec l'identité remarquable (a-b)² = a²-2ab+b²

1) f(x) = 1-4x+2x²-9 = 2x² - 4x - 10  

a = 2 ; b = -4 ; c = -10

Delta = b² - 4ac

         = (-4)² - 2 * (-10)

         =  16 + 20 = 26 comme 26 > 0 alors 2 racines

X1 =  [tex]\frac{-b+\sqrt{delta}}{2a}[/tex]   et   X2 = [tex]\frac{-b-\sqrt{delta}}{2a}[/tex]

X1 = [tex]\frac{4+\sqrt{26}}{4}[/tex]         et   X2 = [tex]\frac{4-\sqrt{26}}{4}[/tex]

X1 = [tex]1+\frac{\sqrt{26}}{4}[/tex]         et   X2 = [tex]1- \frac{\sqrt{26}}{4}[/tex]

2) Tableau de signe:

signe de "a" sauf entre les racines.

Donc f(x) < 0 entre [x1;x2]

View image Sedeb
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.