Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour je n’arrive pas à résoudre les dérivées pour obtenir le signe de la fonction. Merci d’avance
Signe et variation
Dans chacun des cas suivants, étudier le sens de
variation de la fonction.
1.f définie sur R par f(x) = -5e-4x.
2. g définie sur R par g(x) = (-x + 1)e3x.​


Sagot :

Réponse :

Explications étape par étape :

[tex]f'(x)=-5*(-4)e^{-4x}=20e^{-4x}[/tex]

La fonction exponentielle est toujours strictement positive donc f'(x) > 0

g est le produit de deux fonctions donc on doit utiliser u v

avec u(x) = - x + 1 et v(x) = exp(3 x)

donc u'(x) = - 1 et v'(x) = 3 exp(3 x)

[tex]g'(x)=-e^{3x}+(- x + 1)e^{3x}=(-1-x+1)e^{3x}=- x e^{3x}[/tex]

La fonction exponentielle est toujours strictement positive donc g'(x) a le même signe que - x

Si x < 0 alors - x > 0 donc g'(x) > 0

Si x = 0 alors - x = 0 donc g'(x) = 0

Si x > 0 alors - x < 0 donc g'(x) < 0

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.