Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour,

Ce cours vous est proposé par l'équipe de Brainly\NosDevoirs

Matière : Mathématiques
Niveau : Première
Chapitre : Dérivation et fonctions dérivées usuelles


Sagot :

Bonjour :)

Ce cours consistera à définir le critère de dérivabilité qui permet de justifier la dérivabilité d'une fonction à l'aide du taux d'accroissement. Pour illustrer cette application, nous étudierons l'exemple de la fonction f(x) = x². Pour terminer, nous rappellerons les fonctions dérivées usuelles vues au programme de première.

  • Introduction à la dérivation

En posant I, un intervalle non vide de [tex]\mathbb R[/tex].

Définition : Soit f : I [tex]\rightarrow \mathbb R[/tex] une fonction, et [tex]x_0 \in \mathbb R[/tex]. On dit que f est dérivable en [tex]x_0[/tex] si :

[tex]\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} \ \ \ existe,\ et \ est \ finie[/tex]

Exemple : On définit la fonction f(x) = x² pour tout réel x. Démontrons que f est dérivable sur ][tex]-\infty[/tex]; [tex]+\infty[/tex][ et [tex]\forall \ \ x \in \mathbb R[/tex] f'(x) = 2x

[tex]Soit \ x_0 \in \mathbb R\\\\ \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0+h)^{2}-x_0^{2}}{h}\\\\\Leftrightarrow \lim_{h \to 0} \frac{x_0^{2} + 2x_0h + h^{2} - x_0^{2}}{h} = \lim_{h \to 0} \frac{h(2x_0+h)}{h}\\\\\Leftrightarrow \lim_{h \to 0} (2x_0+h) = 2x_0[/tex]

La limite étant finie, on admet donc que f'([tex]x_0[/tex]) = [tex]2x_0[/tex]

f est dérivable sur [tex]\mathbb R[/tex] et [tex]x_0 \in \mathbb R[/tex]

[tex]\forall \ x \in \mathbb R \ \ f'(x) = 2x[/tex]

  • Fonctions dérivées usuelles

Rappel : f une fonction définie sur I. f est dérivable sur I si elle est dérivable pour tout x, réel appartenant à I. La fonction qui à tout x de I associe le nombre dérivé de f en x est appelé fonction dérivée de f et notée f'.

Formules de dérivation des fonctions usuelles :

[tex]f(x)=a \ \ \ \ avec\ a \in \mathbb R \ \ \ f'(x) = 0\\\\f(x) = ax\ \ avec \ a \in \mathbb R \ \ \ f'(x) = a\\\\f(x) = x^{2} \ \ d\'efinie \ sur \ \mathbb R \ \ f'(x) = 2x\\\\f(x) = x^{n} \ \ d\'efinie \ sur \ \mathbb R \ \ f'(x) = nx^{n-1} \ \ et\ n\ge1\\\\f(x) = \frac{1}{x} \ \ d\'efinie \ sur \ \mathbb R* [sauf (0)] \ \ f'(x) = -\frac{1}{x^{2}} \\\\f(x) = \frac{1}{x^{n}}\ \ d\'efinie \ sur \ \mathbb R* [sauf (0)] \ \ f'(x) = -\frac{n}{x^{n+1}}[/tex]

[tex]f(x) = \sqrt{x} \ \ d\'efinie \ sur \ [0; +\infty[ \ \ \ f'(x) = \frac{1}{2\sqrt{x}} \ d\'erivable \ sur \ ]0; +\infty[[/tex]

Espérant que ce cours t'aura aidé, je te souhaite une excellente continuation.

Vous pouvez retrouver nos cours sur notre Blog ;)

View image Micka44

Profite de tes vacances pour améliorer tes connaissances avec NosDevoirs !

Nosdevoirs est une communauté de plus de 200 millions d'étudiants et d'experts qui mettent en commun leurs connaissances.

#ApprendsAvecNosdevoirs

View image NodevoirsHelp
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.