Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Réponse :
Explications étape par étape :
Bonjour
1)
Comme il existe une infinité de nombres entiers, on est certain qu'il y a une erreur de calcul dans la démonstration qui démontre qu'il y en a qu'un seul
2)
[tex]\left[(n+1)-\dfrac{1}{2} (2n+1)\right]^2 = \left[n-\dfrac{1}{2} (2n+1)\right]^2[/tex]
Or a²=b² est équivalent à (a=b) ou (a=-b) et non à (a=b) seulement
Donc puisque a=b amène a une absurdité on a donc a=-b
Ce qui donne
[tex](n+1)-\dfrac{1}{2}(2n+1)= -\left(n-\dfrac{1}{2}(2n+1)\right)\\ \iff (n+1)-\dfrac{1}{2}(2n+1)= -n+\dfrac{1}{2}(2n+1)\\ \iff n+1+n= \dfrac{1}{2}(2n+1)+-\dfrac{1}{2}(2n+1)\iff 2n+1=2n+1[/tex]
Et maintenant le résultat est toujours vrai!!
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.