Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour pourriez vous m'aidez a cette exercice merci
On considère, dans un repère orthonormé, les points A(−2 ;−4); B(10 ;2);C (8 ;6)et D(−4 ;0)
.
1. Montrer que ABCD est un parallélogramme.
2. a) Calculer les longueurs AC et BD.
b) En déduire la nature de ABCD.
3. Calculer les coordonnées du point d’intersection des diagonales de ABCD.

Sagot :

Bonjour :))

On considère, dans un repère orthonormé, les points A(-2; -4), B(10; 2), C(8; 6) et D(-4; 0).

1. Montrons que [AB] \\ et = [CD] :

[tex]\overrightarrow{AB} = (10-(-2); 2-(-4)) \ donc \ \overrightarrow{AB} = (12; 6)\\\\\overrightarrow{CD} = (-4-8; 0-6) \ donc \ \overrihgtarrow{CD} = (-12; -6)\\\\Calculons \ le \ d\'eterminant \ pour \ prouver \ la \ colin\'earit\'e :\\12*(-6)-(-12)*6=-72-(-72)=-72+72=0\\\\\overrightarrow{AB} \ et \ \overrightarrow{CD}\ sont \ colin\'eaires. \ Par \ cons\'equent, ils \ sont \ parall\`eles.\\\\V\'erifions \ leur \ longueur :[AB] = \sqrt{12^{2}+6^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}\\\\[/tex]

[tex][CD] = \sqrt{(-12)^{2}+(-6)^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}[/tex]

CONCLUSION : ABCD est un parallélogramme.

2. a)Longueurs AC et BD

[tex]\overrightarrow{AC} = (8-(-2); 6-(-4))=(10;10)\\\overrightarrow{BD} = (-4-10; 0-2) = (-14; -2)\\\\Longueurs \ de \ [AC] \ et \ [BD] :\\\\[AC] = \sqrt{10^{2}+10^{2}} = \sqrt{200} = \sqrt{2*4*25} = 10\sqrt{2}\\\\[BD] = \sqrt{(-14)^{2}+(-2)^{2}} = \sqrt{196+4}=\sqrt{200}=10\sqrt{2}\\\\Les \ longueurs [AC] \ et [BD] \ sont \ les \ m\^emes.[/tex]

b.) Nature de ABCD

On en déduit que ABCD est un parallélogramme rectangle.

3). Coordonnées du point d'intersection des diagonales

[tex]Les \ diagonales \ sont \ [AC] \ et \ [BD].\\\\Point \ milieu \ de \ [AC] : (\frac{-2+8}{2} ; \frac{-4+6}{2}) = (3; 1)\\Point \ milieu \ de \ [BD] : (\frac{10+(-4)}{2} ; \frac{2+0}{2}) = (3; 1)[/tex]

Je te souhaite une bonne continuation :))

Bonne soirée ;)

View image Micka44
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.