Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour pourriez vous m'aidez a cette exercice merci
On considère, dans un repère orthonormé, les points A(−2 ;−4); B(10 ;2);C (8 ;6)et D(−4 ;0)
.
1. Montrer que ABCD est un parallélogramme.
2. a) Calculer les longueurs AC et BD.
b) En déduire la nature de ABCD.
3. Calculer les coordonnées du point d’intersection des diagonales de ABCD.


Sagot :

Bonjour :))

On considère, dans un repère orthonormé, les points A(-2; -4), B(10; 2), C(8; 6) et D(-4; 0).

1. Montrons que [AB] \\ et = [CD] :

[tex]\overrightarrow{AB} = (10-(-2); 2-(-4)) \ donc \ \overrightarrow{AB} = (12; 6)\\\\\overrightarrow{CD} = (-4-8; 0-6) \ donc \ \overrihgtarrow{CD} = (-12; -6)\\\\Calculons \ le \ d\'eterminant \ pour \ prouver \ la \ colin\'earit\'e :\\12*(-6)-(-12)*6=-72-(-72)=-72+72=0\\\\\overrightarrow{AB} \ et \ \overrightarrow{CD}\ sont \ colin\'eaires. \ Par \ cons\'equent, ils \ sont \ parall\`eles.\\\\V\'erifions \ leur \ longueur :[AB] = \sqrt{12^{2}+6^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}\\\\[/tex]

[tex][CD] = \sqrt{(-12)^{2}+(-6)^{2}} = \sqrt{144+36} = \sqrt{180} = 6\sqrt{5}[/tex]

CONCLUSION : ABCD est un parallélogramme.

2. a)Longueurs AC et BD

[tex]\overrightarrow{AC} = (8-(-2); 6-(-4))=(10;10)\\\overrightarrow{BD} = (-4-10; 0-2) = (-14; -2)\\\\Longueurs \ de \ [AC] \ et \ [BD] :\\\\[AC] = \sqrt{10^{2}+10^{2}} = \sqrt{200} = \sqrt{2*4*25} = 10\sqrt{2}\\\\[BD] = \sqrt{(-14)^{2}+(-2)^{2}} = \sqrt{196+4}=\sqrt{200}=10\sqrt{2}\\\\Les \ longueurs [AC] \ et [BD] \ sont \ les \ m\^emes.[/tex]

b.) Nature de ABCD

On en déduit que ABCD est un parallélogramme rectangle.

3). Coordonnées du point d'intersection des diagonales

[tex]Les \ diagonales \ sont \ [AC] \ et \ [BD].\\\\Point \ milieu \ de \ [AC] : (\frac{-2+8}{2} ; \frac{-4+6}{2}) = (3; 1)\\Point \ milieu \ de \ [BD] : (\frac{10+(-4)}{2} ; \frac{2+0}{2}) = (3; 1)[/tex]

Je te souhaite une bonne continuation :))

Bonne soirée ;)

View image Micka44
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.