Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Pour simplifier le problème, on retire la partie horizontale, qui ne nous intéresse pas.
Pour la parcourir, le cycliste mettait : t=28/12=2,33 heures, soit 2h20
Pour le trajet de A vers B, on pose x la longueur totale des montées et y celle des descentes.
On a alors :
(x/8)+(y/15)=5-2.33=2.67 heures, soit 2h40
Pour le trajet de B vers A, x devient la descente et y la montée d'où :
(x/15)+(y/8)=4h39-2h20=2h19 soit 2,3 heures
On résout alors le système d'équation suivant :
(x/8)+(y/15)=2,67
(x/15)+(y/8)=2,3
On a alors :
(15/8)x+y=40.05 (1)
(8/15)x+y=18.4 (2)
On soustrait la relation (1) par la relation (2), on obtient :
(15/8)x-(8/15)x=21.65
Donc, (225/120)x-(64/120)x=21.65
D'où (161/120)x=21.65
x=16,1 km
On a (15/8)x+y=40.05
Donc, y=40.05-30.3=9.75km
Au final, de A vers B, la longueur totale de la montée est d'environ 16.1km.
La longueur totale de la descente est d'environ 9.75km.
FIN
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.