Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Pour simplifier le problème, on retire la partie horizontale, qui ne nous intéresse pas.
Pour la parcourir, le cycliste mettait : t=28/12=2,33 heures, soit 2h20
Pour le trajet de A vers B, on pose x la longueur totale des montées et y celle des descentes.
On a alors :
(x/8)+(y/15)=5-2.33=2.67 heures, soit 2h40
Pour le trajet de B vers A, x devient la descente et y la montée d'où :
(x/15)+(y/8)=4h39-2h20=2h19 soit 2,3 heures
On résout alors le système d'équation suivant :
(x/8)+(y/15)=2,67
(x/15)+(y/8)=2,3
On a alors :
(15/8)x+y=40.05 (1)
(8/15)x+y=18.4 (2)
On soustrait la relation (1) par la relation (2), on obtient :
(15/8)x-(8/15)x=21.65
Donc, (225/120)x-(64/120)x=21.65
D'où (161/120)x=21.65
x=16,1 km
On a (15/8)x+y=40.05
Donc, y=40.05-30.3=9.75km
Au final, de A vers B, la longueur totale de la montée est d'environ 16.1km.
La longueur totale de la descente est d'environ 9.75km.
FIN
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.