Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bjr, j'ai un exercice a faire mais je n'y arrive pas pouvez vous m'aider.
On note x la longueur (en cm) d’une arête du grand cube.
a. À quel intervalle I le réel x doit-il appartenir ?

b. Déterminer, en fonction de x∈I, la surface S(x) de la face avant du solide.

c. Déterminer, en fonction de x∈I, le volume V(x) du solide.

2. On souhaite que la surface de la face avant soit de 44 cm2. Quelle doit être la longueur des arêtes du grand cube ? Quel est alors le volume du solide ?

3. On souhaite à présent que le volume du solide soit égal à
837/8 cm^3.
a. Quelle doit être la longueur des arêtes du grand cube ?

b. Quelle est alors la surface de la face avant du solide ?

4. Tracer les courbes représentatives C
S

et C
V

de S et de V sur R
+
. Semble-t-il exister une valeur de x non nulle pour laquelle S(x)=V(x)? Si oui, la déterminer.

Sagot :

Réponse:

Bonjour !! Voici la réponse :

Question 1:

a. x doit appartenir à l'intervalle [0,+infini[

b. Face avant du solide : S(x)= x² + 2(x/3)² = 11x²/9 cm²

c. V(x)= x³ + 4(x/3)³= 31x³/27 cm³

Question 2 :

S(x)= 44cm²

11x²/9 = 44

x²= 44 * (9/11)

x² = 36

x=6 ou x= -6 comme x est un nombre entier égal ou positif on a que x=6 cm comme solution .

V(6)= 31*6³ / 27 = 248cm³ es me volume du solide pour x=6cm.

Question 3:

a) V(x) = 837/8

31x³/26 = 837/8

(x³ )^⅓ = (729/8)^⅓

x = 9/2 cm doivent faire les arrêtes du grand cube afin d'avoir un volume de 837/8 cm³

b) S(9/2)= 11*9²/ 2²*9 = 24.75 cm² est la surface de la face avant du solide pour des arrêtes de 9/2cm

Question 4:

( voir photo : courbe fine représente la fonction V donc c'est la courbe Cs , l'autre qui en gras représente la fonction S donc c'est la courbe Cv )

Oui on peut voir qu'il existe une valeur non nulle pour laquelle S(x) = V(x) .

( la suite sur la photo)

Donc x= 33/31

Question 5:

Sur l'intervalle x€[0; 33/31[ Cs est en haut de Cv et sur l'intervalle x€]33/31 ; +infini [ c'est Cv qui est en haut de Cs

View image dinaaa68
View image dinaaa68
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.