Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.
Sagot :
Bonjour
xₙ = [tex]\int\limits^1_0 {x^{n} * cos(x) } \, dx[/tex]
xₙ₊₁ = [tex]\int\limits^1_0 {x^{n+1} * cos(x) } \, dx[/tex]
Si la suite est positive alors xₙ < xₙ₊₁ ce qui donne :
[tex]\int\limits^1_0 {x^{n} * cos(x) } \, dx[/tex] ≤ [tex]\int\limits^1_0 {x^{n+1} * cos(x) } \, dx[/tex]
pour tout x de [0; 1], xⁿ <= xⁿ⁺¹ => xⁿ est positive. si n est positif ou négatif
pour tout x de [0; 1], cos(x) > 0 donc cos(x) est positive
il vient :
xⁿ * cos(x) <= xⁿ⁺¹ * cos(x)
Le suite xₙ = [tex]\int\limits^1_0 {x^{n} * cos(x) } \, dx[/tex] est positive et croissante de 0 à 1
A vérifier
Bon courage
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.