Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Bonjour
Tout d’abord, Il s’agira dans ce cours de démontrer la solution globale d’une équation différentielle de type y’ = ay + b. Pour terminer, deux exemples seront proposés afin de vous familiariser avec des études de cas que vous pouvez rencontrer lors d’un exercice ou d’un devoir noté.
Prérequis : COURS | https://nosdevoirs.fr/devoir/3744941
- Généralité & solutions
On note ([tex]E[/tex]) l’équation différentielle complète de type y’= ay + b est appelée équation différentielle linéaire de premier ordre à coefficients constants avec second membre constant.
On note ([tex]E_0[/tex]) l'équation différentielle homogène y’ = ay associée à ([tex]E[/tex]) est appelée équation différentielle linéaire de premier ordre à coefficients constants.
Dans le cas où aucune condition particulière n’est posée, y’= ay + b admet une infinité de solutions.
Toute fonction de la forme [tex]f(x) = Ke^{ax} - \frac{b}{a}[/tex] est solution de l'équation complète y' = ay + b.
- Démonstration
On définit une solution constante [tex]\phi(x)=\lambda[/tex] de ([tex]E[/tex]) où [tex]\lambda[/tex] est un réel. Cette fonction est dérivable sur [tex]\mathbb R\\[/tex] et [tex]x \in \mathbb R\\[/tex].
Ce qui signifie que [tex]\phi(x)[/tex] est solution de ([tex]E[/tex]) si, et seulement si, [tex]\phi'(x)=a\phi(x)+b[/tex]
[tex]0 = a\phi(x) + b = a\lambda +b\\\\\lambda = -\frac{b}{a}[/tex]
On peut ainsi définir une fonction constante : [tex]\phi(x) = -\frac{b}{a}[/tex]
Soit h(x) une fonction solution de l'équation complète y' = ay + b.
Montrons que [tex]\\h(x)-\phi(x)\\[/tex] est solution de ([tex]E_0[/tex]) :
[tex](h-\phi)'(x)=h'(x)-\phi'(x)=h'(x)-0\\\\(h-\phi)'(x)=ah(x)+b=a(h(x) + \frac{b}{a})\\\\(h-\phi)'(x)=a(h(x)-\phi(x))[/tex]
Il existe donc un réel K un réel [tex]\in \mathbb R[/tex] telle que [tex]\forall\ x \in \mathbb R\\[/tex] :
[tex]h(x)-\phi(x)=Ke^{ax}\\\\h(x)=Ke^{ax} + \phi(x)\\\\h(x) = Ke^{ax} - \frac{b}{a}[/tex]
- Cas de figures
Exemple 1 : on pose la fonction y définie sur [tex]\mathbb R\\[/tex] telle que y' = 2y + 4.
L'équation différentielle est du type y' = ay + b avec a = 2 et b = 4. On applique la formule vue au cours :
[tex]y(x) = Ke^{2x} - \frac{4}{2} \\\\y(x) = Ke^{2x} - 2[/tex]
Exemple 2 : on pose la fonction y définie sur [tex]\mathbb R\\[/tex] telle que 2y' + 7y = 11. On donne y(0) = 1/3
Il faut transformer l'équation différentielle de manière à se trouver dans un cas du type y' = ay + b.
[tex]2y' = -7y + 11\\\\y' = -\frac{7}{2}y + \frac{11}{2}[/tex]
Nous avons donc la bonne forme de l'équation avec :
[tex]a = -\frac{7}{2} \\\\b= \frac{11}{2}[/tex]
Ainsi, la solution générale de l'équation différentielle est donnée par :
[tex]y(x) = Ke^{-\frac{7}{2}x}+\frac{11}{7}[/tex]
Il est précisé dans l'énoncé que y(0) = 1/3. Nous pouvons donc trouver une solution exacte de y(x) :
[tex]y(0)=Ke^{-\frac{7}{2}*0} + \frac{11}{7}\\\\y(0)=Ke^{0}+\frac{11}{7} \\\\K+\frac{11}{7} = \frac{1}{3}\\\\K=-\frac{26}{21}[/tex]
Par conséquent, la solution exacte est :
[tex]y(x) = -\frac{26}{21} e^{-\frac{7}{2}x} + \frac{11}{7}[/tex]
En espérant que ce cours t'aura aidé, je te souhaite une excellente continuation.
Vous pouvez retrouver d'autres cours sur notre Blog ;)
Profite de tes vacances pour améliorer tes connaissances avec NosDevoirs !
Nosdevoirs est une communauté de plus de 200 millions d'étudiants et d'experts qui mettent en commun leurs connaissances.
#ApprendsAvecNosdevoirs
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.