Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, pourriez vous m'aidez pour cette exercice s'il vous plaît, merci d'avance ​

Bonjour Pourriez Vous Maidez Pour Cette Exercice Sil Vous Plaît Merci Davance class=

Sagot :

Bonjour :)

Réponse :

[tex]f'(x) = \frac{-2x^{2} + 4}{(x^{2} - x + 2)^{2} } \\\\f'(x) = \frac{3}{11\sqrt{\frac{6}{11} x + 9} } \\\\f'(x) = -192x^{2} +288x-108[/tex]

Explications étape par étape :

Rappelons dans un premier temps, les dérivées usuelles :

[tex](\sqrt{u} )'=\frac{u'}{2\sqrt{u} } \\\\(u^{n})'=nu'u^{n-1}\\\\(\frac{u}{v} )'=\frac{u'v-uv'}{v^{2}}[/tex]

Calcul f'(x) pour N°1

[tex]u=-3x^{2}+5x-6\\u'=-6x+5\\v=x^{2}-x+2\\v'=2x-1\\\\\\f'(x)=\frac{(-6x+5)(x^{2}-x+2)-(-3x^{2}+5x-6)(2x-1)}{(x^{2}-x+2)^{2}}\\\\f'(x)=\frac{(11x^{2}-17x+10)-(13x^{2}-17x+6)}{(x^{2}-x+2)^{2}} \\\\f'(x) = \frac{-2x^{2}+4}{(x^{2}-x+2)^{2}}[/tex]

Calcul f'(x) pour N°2

[tex]u=\frac{6}{11}x+9\\\\u'=\frac{6}{11}\\\\\\f'(x)=\frac{6}{11*2\sqrt{\frac{6}{11}x+9}}\\\\f'(x)=\frac{6}{22\sqrt{\frac{6}{11}x+9}}\\\\f'(x)=\frac{3}{11\sqrt{\frac{6}{11}x+9}}[/tex]

Calcul f'(x) pour N°3

[tex]u=-4x+3\\u'=-4\\\\f'(x)=3*(-4)*(-4x+3)^{2}\\\\f'(x)=-12*(16x^{2}-24x+9)\\\\f'(x)=-192x^{2}+288x-108[/tex]

Espérant t'avoir apporté les explications nécessaires.

Bonne soirée :)

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.