Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

bonjour quelqu'un pourrai m'expliquer comment résoudre la limite de racine de ( n puissance 5 moins 3n) le tout moins n . la limite est en plus infini[tex]limite \sqrt{n^{5}+3n} -n[/tex]



Sagot :

en +infini 3n est tout petit devant n^5 et la racine se comporte comme n^(5/2), la différence s'écrit n(n*3/2-1) et tend donc vers +infini.

 

Ou plus simple : n^5+3n=n^4(n+3/n^4) donc rac(n^5+3n)=n²*rac(n+3/n^4) et l'expression devient n*(n*rac(n+3/n^4)-1) les deux facteurs tendent vers +infini

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.