Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonsoir ! Pouvez-vous m'aider à répondre aux questions de cet exercice (même une des trois ☺️) :

On souhaite démontrer la propriété suivante.

POUR TOUS RÉELS A ET B STRICTEMENT POSITIFS, ON A :
[tex] \sqrt{a + b} \: < \sqrt{a \:} + \sqrt{b} [/tex]
En utilisant les indications suivantes, rédiger la démonstration de la propriété.

1)Dire quel est le signe des réels
[tex] \sqrt{a + b} \: et \: \sqrt{a \: } + \sqrt{b} [/tex]
2)Calculer l'image des réels
[tex] \sqrt{a + b} \: et \: \sqrt{a \: } + \sqrt{b} [/tex]
par la fonction carrée et comparer les résultats.

3)En utilisant un argument sur le sens de variation de la fonction carrée, deduire une comparaison des réels
[tex] \sqrt{a + b} \: et \: \sqrt{a \: } + \: \sqrt{b} [/tex]
Merci beaucoup ! ​

Sagot :

Réponse :

Explications étape par étape :

1. Une racine carrée est un nombre positif donc ces deux nombres sont deux nombres positifs

2.[tex](\sqrt{a + b} )^{2} = a + b[/tex]

[tex](\sqrt{a } + \sqrt{b} )^{2} = a + b + 2 \sqrt{a } \times \sqrt{b}[/tex]

[tex]\sqrt{a } \times \sqrt{b} \geq 0[/tex] donc [tex](\sqrt{a } + \sqrt{b} )^{2} \geq (\sqrt{a + b} )^{2[/tex]

3. La fonction carrée est croissante sur [0 ; + ∞ [ donc comme [tex]\sqrt{a } + \sqrt{b}[/tex] et [tex]\sqrt{a + b}[/tex] Sont tous deux positifs alors ils sont dans le meme ordre que leurs carrés donc  

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.