Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

on souhaite trouver la hauteur SH de la falaise représentée ci-dessous alors qu'on ne peut pas mesurer la distance IH.

 

explication pour la figure: OSH rectangle en H, SO est l'hypothenuse de ce triangle. I est un point de OH, OI mesure 64m. IH se note x. en prenant I un deuxième triangle rectangle se créait SIH, l'angle SIH mesure 34°. pour le triangle rectangle SOH l'angle est de 25°.

 

pour cela on se place en I et on effectue la mesure de l'angle SIH, puis on recule de 64m en ligne droite. En O, on effectue la mesure de l'angle SOH. On note SH=h

 

1- Exprimer tanSIH. En déduire la distance x en fonction de h.

2- Exprimer tanSOH. En déduire la distance OH en fonction de h.

3- En utilisant les résultats de questions 1 et 2 exprimer h.

4- Calculer h. On donnera une valeur arrondie au centième.



Sagot :

tan(SIH) c'est (cote_opp/cote_adj) soit SH/IH ou h/x ; on a donc x=h/tan(34°)

 

tan(SOH) c'est SH/OH soit h/(64+x) , on a donc OH=64+x=h/tan(25°)

 

AInsi x=h/tan(25°)-64=h/tan(34°) donc h[(1/tan(25))-(1/tan(34°)]=64

 

il vient h=96,685

 

 

 

 

 

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.