Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour , quelqu'un saurait comment construire un systeme d'equation satisfaite pas a, b et c, sachant que F(x)=ax^3+bx²+c, qu'une equation de la tangeante à sa courbe au point d'abscisse (-2) est y=24x+32 et qu'elle admet un extremum en 2 .

Merci  à ceux qui regarderoont :).



Sagot :

 

il nous faut F'(x) : 3ax²+2bx

 

alors : tangente (pas de a) y=24x+32 en (-2,F(-2)) s'exprime par :

F'(-2)=24 soit 12a-4b=24 et par F(-2)=-48+32=-16 soit -8a+4b+c=-16


voilà déjà 2 des 3 équations nécessaires (3 inconnues)

 

extrémum <=> tangente horizontale, F'=0 donc F'(2)=0 soit 12a+4b=0


La résolution donne a=1 b=-3 c=4

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.