Answered

Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

URGENT

 

Un professeur conçoit un QCM de à trois propositions chacune. Nous voulons savoir combien de questions il faut mettre pour qu’un élève répondant au hasard n’ait que 5% de chances de réussir.

 

1) Si le QCM contient 5 questions, montrer que le nombre de bonnes réponses obtenues en tapant au hasard est une loi binomiale de paramètres n=5 et p=1/3. 

 

2)Si le QCM contient 5 questions, quel est le plus petit k pour lequel P(X  < k) plus grand que 0.95 ?

 

3)Si le QCM contient N questions, alors nombre de réponses correctes suit alors une loi binomiale de paramètres N et 1/3. Donner le N minimum pour avoir

   P(X  < N/2 ) plus grand que 0.95.

Pour cela, refaire la question (2) en remplaçant 5 par 1, 2, 3, etc. jusqu’à obtenir le résultat



Sagot :

Je vois que l'erreur a été rectifiée...

 

 

La réponse au hasard à une question constitue donc un tirage "succés,échéc" avec p=1/3 et 1-p=2/3, et il y a n=5 experiences élémentaires, donc le nombre de succés suit la loi B(5,1/3)

 

2 Ta calculette répondra mieux et plus vite.

 

 3 de même 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.