Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

bonjour j'ai besoin d'aide avec ces expressions il faut que je les développent ou les factorisent merci bcp
[tex](2x + \sqrt{7} ) {}^{2} [/tex]
[tex](x - 3 \sqrt{2} ) {}^{2} [/tex]
[tex] \sqrt{3} (2x + \sqrt{3} ) {}^{2} [/tex]
[tex](2x - \sqrt{5} )(2x + \sqrt{5} )[/tex]


Sagot :

Explications étape par étape:

Avant tout on sait que :

[tex](x + y) ^{2} = x ^{2} + 2xy + y ^{2} [/tex]

[tex](x - y) ^{2} = {x}^{2} - 2xy + y ^{2} [/tex]

[tex](x - y)(x + y) = x ^{2} - {y}^{2} [/tex]

Donc

[tex](2x + \sqrt{7} ) ^{2} = 4x ^{2} + 4x \sqrt{7} + 7[/tex]

[tex](x - 3 \sqrt{2} ) ^{2} = {x}^{2} - 6 \sqrt{2} + 18[/tex]

[tex] \sqrt{3} (2x + \sqrt{3} ) ^{2} = \sqrt{3} (4 {x}^{2} + 4x \sqrt{3} + 3) = 4 {x}^{2} + 12x + 3 \sqrt{3} [/tex]

[tex](2x - \sqrt{5} )(2x + \sqrt{5} ) = 4 {x}^{2} - 5[/tex]

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.