Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Je suis bloquée sur une question ... On sait que f est derivable sur R , qu'il existe x0 appartenant a R tel que f(x0) different de 0. Et pour tout reels x et y, f(x+y) = f(x)f(y) On sait aussi que f est a valeurs positives, que f(0) = 1 et que pour tout reel x , f '(x+a) = f(a) f '(x) On suppose alors que f ' (0) > 0 On me demande quelle est la limite en +infini de f(x) ...




Sagot :

on a donc une fonction positive partant de 1 et croissante. Il est clair qu'elle n'est pas bornée : f(nx)=f(x)^n pour tout n>0 en constitue une preuve.

donc, elle tend vers +infini