Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
si f s'annule en x1, alors f(x1+(x0-x1))=f(x0) vaut f(x0-x1)f(x1) donc 0 CONTRADICTION
s'il existe x2 tel que f(x2)<0 alors f(2x2) est >0 et f s'annule en un point de [x2,2x2] CONTRADICTION avec ce qui précéde
donc f est strictement positive sur R
f(x+0)=f(0)f(x) donne f(0)=1
f(x+a)=f(x)f(a) donne par dérivation f'(x+a)=f(a)f'(x)
donc, si f' est >0 pour un x, elle est positive pour tout x car f(a)>0
f est donc croissante
et comme elle n'est pas bornée car pour tout x verifiant f(x)>1, f(nx)=(f(x))^n tend vers +inf, elle tend vers +inf
SAns cette condition, de "non bornée", elle pouvait très bien avoir une asymptote horizontale (ex : 10-1/x pour x>0.1)
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.