Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
si f s'annule en x1, alors f(x1+(x0-x1))=f(x0) vaut f(x0-x1)f(x1) donc 0 CONTRADICTION
s'il existe x2 tel que f(x2)<0 alors f(2x2) est >0 et f s'annule en un point de [x2,2x2] CONTRADICTION avec ce qui précéde
donc f est strictement positive sur R
f(x+0)=f(0)f(x) donne f(0)=1
f(x+a)=f(x)f(a) donne par dérivation f'(x+a)=f(a)f'(x)
donc, si f' est >0 pour un x, elle est positive pour tout x car f(a)>0
f est donc croissante
et comme elle n'est pas bornée car pour tout x verifiant f(x)>1, f(nx)=(f(x))^n tend vers +inf, elle tend vers +inf
SAns cette condition, de "non bornée", elle pouvait très bien avoir une asymptote horizontale (ex : 10-1/x pour x>0.1)
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.