Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

On sait qu'une fonction f est dévrivable sur R, qu'il existe x0 appartient R tel que f(x0) différent de 0 et qu pour tout réels x et y f(x+y)=f(x)f(y)

 

1) Montrer que f a des valeurs positives.

2) Montrez que f(0)=1

3) Soit a un réel fix. Montre que, pour tout réel x, f'(x+a)=f(a)f'(x)

4) On suppose que f'(0)>0

     a) Quel est le sens de variation de f ?

     b) Déterminez lim (x -> + l'infinie) f(x)

5) Une fonction strictement croissante et à valeurs strictement positives diverge-t-elle forcément vers + l'infinie



Sagot :

si f s'annule en x1, alors f(x1+(x0-x1))=f(x0) vaut f(x0-x1)f(x1) donc 0 CONTRADICTION

s'il existe x2 tel que f(x2)<0 alors f(2x2) est >0 et f s'annule en  un point de [x2,2x2] CONTRADICTION avec ce qui précéde

donc f est strictement positive sur R

 

f(x+0)=f(0)f(x) donne f(0)=1

 

f(x+a)=f(x)f(a) donne par dérivation f'(x+a)=f(a)f'(x)

donc, si f' est >0 pour un x, elle est positive pour tout x car f(a)>0

f est donc croissante

et comme elle n'est pas bornée car pour tout x verifiant f(x)>1, f(nx)=(f(x))^n tend vers +inf, elle tend vers +inf

SAns cette condition, de "non bornée", elle pouvait très bien avoir une asymptote horizontale (ex : 10-1/x pour x>0.1)