Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
1. On sait que
V = [tex]\frac{l*L*h}{3}[/tex]
On résout l'équation afin de déterminer h.
[tex]V*3= l*L*h[/tex]
[tex]\frac{V*3}{L}=l*h[/tex]
[tex]\frac{V*3}{L}/l=h[/tex]
On remplace par les données de l'énoncé.
[tex]\frac{72*3}{6} /6=6=h[/tex]
La hauteur de cette pyramide est donc de 6 cm.
2) a. C'est un prisme droit à base trapézoïdale.
b. On pose h' = 3 et h= 6 (h' correspondant à la hauteur de la petite pyramide, et h à la hauteur de la grande)
échelle k de réduction est k = h'/h
la réduction du volume de la grande pyramide est:
Volume de la petite pyramide = k^3 * volume de la grande pyramide
k = 3/6 = 1/2
Volume de la petite pyramide = (1/2)^3 * 72
V1 = 0.25 * 72
V1 = 18 cm^3
Le volume V1 de la pyramide réduite est 18 cm^3.
V2 = V - V1
V2 = 72 - 18
V2 = 54 cm^3
Le volume V2 de du prisme droit à base trapézoïdale est 54 cm^3.
Explications étape par étape :
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.