Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Bonjour,
B = 9-(x-2)² est une identité remarquable de la forme : a²-b² = (a+b)(a-b)
B=(3+x-2)(3-x+2) = (x+1)(-x+5)
les racines sont :x = -1 et x = 5
f(x) = x²-2x-3
(x+1)(x-3) = x²-3x+x-3 = x²-2x-3 = f(x)
f(x)=(x+1)(x-3) = 0 revient à trouver :
(x+1) = 0 x = -1
(x-3) = 0 x = 3
f(x) = x^4-10x² + 9
(x²-5)²-16 = x^4-10x²+25-16 = x^4-10x²+9 = f(x)
f(x) = (x²-5)²-16 pour chercher le minimum, on voit que (x²-5)² est un carré donc toujours >0 ou nul.
La valeur la plus petite de f(x) sera pour (x²-5)²=0 (soit x = +/- racine carrée de 5)
Dans ce cas, f(x) vaudra :
0-16 = -16
J'espère que tu as compris.
a+
une différence de carrés c'est évident 9 = 3² etg (x - 2)² est le carré de x-2 une expression avec des + et des - est appelée somme?
(x+1)(x-3) est la factorisation du trinôme et on applique la règle du produit nul (x+1)(x-3) = 0 ---> x = -1 ou x = 3
la forme (x²-5)² est toujours positive et atteint sa plus petite valeur en 0 quand x = -rac(5) ou rac(5) à cemoment f(x) = -16
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.