Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

ABC est un triangle en C tel que AC = 6cm et BC = 12 cm M est un point variable du segment [AC]. La perpendiculaire à (AC) passant par M coupe le côté [AB] en H. La perpendiculaire à (BC) passant par H coupe le côyé [BC] en N. On obtient un rectangle CMHN.

1) En utilisant le théorème de Thales, justifier l'égalité :

MH/12=x/6 En déduire l'expression de CN en fonction de x

2) Montrer que l'aire du rectangle CMHN est égale à 12x-2x²

Sagot :

x c'est donc AM.

 

MH/BC=AM/AC fournit MH=CN=2x

 

de même HN/AC=BN/BC donne HN=6*(12-2x)/12 soit CM=6-x

 

et l'aire de CMHN est bien égale à 2x(6-x)=12x-2x²

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.