Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonsoir (niveau 2de)

j'ai une question juste pour le petit 1 )
pourquoi on ne peut pas simplifier l'expression CE = -2AC + 1/2AB en CE = 2CA + 1/2AB puis CE = 5/2CB (ce sont des vecteurs) ?
quand je place E sur le repère ça me donne un résultat totalement différent avec CE = -2AC + 1/2AB et CE = 5/2CB...


j'aimerai bien que quelqu'un de fort en maths m'aide et aussi ne répondez pas n'importe quoi si vous ne savez pas ou quelque chose comme ça (sinon écrivez sous l'espace commentaire svp)
merci d'avance :D

Bonsoir Niveau 2dejai Une Question Juste Pour Le Petit 1 Pourquoi On Ne Peut Pas Simplifier Lexpression CE 2AC 12AB En CE 2CA 12AB Puis CE 52CB Ce Sont Des Vect class=

Sagot :

Réponse :

Explications étape par étape

)Pour A chercher les  coordonnées du vect AE:

AE=AC + CE

AE = AC - 2AC + 1/ 2 AB

AE=-AC  + 1/2 AB  ds le repère(A,AB,AC)

coordonnées de E(1/2; -1)

Pour D chercher les coordonnées de AD

AD=5/2 AC +1/2 CB

AD =5/2 AC + 1/2( CA + AB)

AD= 5/2 AC +  1/2 CA  +1/2 AB

AD = 5/2 AC - 1/2 AC + 1/2 AB

AD = 2AC + 1/2 AB  

coordonnées de D(1/2;2)

calculer les coordonnées des vecteurs  DE et CA

DE (xE- xD;yE - yD)              CA(xA - xC;yA - yC) ;CA(0-0;0 -1) CA(0;-1)

DE(1/2 - 1/2; -1-2)

DE(0;-3)             on voit que DE = 3CA ,cette égalité prouve que les vecteurs

                          DE et Ca st colinéaires donc les droites (DE) et (CA) sont//

-

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.