Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour.
Je remercie le savant qui saura résoudre ce petit exercice de fonctions.

Bonjour Je Remercie Le Savant Qui Saura Résoudre Ce Petit Exercice De Fonctions class=

Sagot :

Réponse :

Rappel:

Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente

à la courbe représentative de f au point d’abscisse a a pour équation:

                                y = f (a) + f ′ (a)(x − a)

1)  

a.        Il faut lire la courbe

f(-3) = 4

Pour   a=-3, on a

y= f(-3) +f'(-3)(x+3) =4 + (x+3)f'(-3)

Or la tangente est horizontale et elle touche le point de coordonnées (-2,4)

c'est-à-dire y= 4 = 4 + (-2+3)f'(-3) => f'(-3) = 0.

Donc   f'(-3) = 0.

f(-1) = 2

la tangente à ce point a pour équation:

y = 2+(x+1)f'(-1).

Or la tangente passe par le point de coordonnées (-1,5 ; 3)

donc y = 3 = 2+(-1,5+1)f'(-1) =>     2-0.5*f'(-1) = 3

                                           => -0.5*f'(-1) = 1 => f'(-1) = -1/0.5 = -2

D'où f'(-1) = -2.

b.  le signe de f'(x) sur l'intervalle [-6,5].

D’après le graphique,

-La fonction f est croissante sur les intervalles [-6,-3] et [1;5}

Donc f'(x) [tex]\geq[/tex] 0 lorsque x est dans [-6,-3]U[1,5].

- La fonction f est strictement décroissante sur l'intervalle [-3,1]

Donc f'(x) < 0 lorsque x est dans ]-3,-1[.

2. Résoudre graphiquement

-f(x) > 0

La solution de cette inéquation est la partie comprise entre 0 et f(-3)=4.

C'est-à-dire S = ]0,4[.

-(f(x)-2)^{2} = 4 les seules valeurs vérifiant cette équation sont 0 et 4.

Donc S={0,4}.

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.