Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour, j'ai besoin d'aide :
Un industriel est spécialisé dans la fabrication de pieds de lampes.
Il crée un nouveau modèle sous la forme d'une sphère tronquée.
La sphère a pour centre I et pour rayon r = 10 cm . [LL') est un diamètre
de la sphère. H est un point de [LL '] tel que IH = 8 cm . Un plan passant
par H et perpendiculaire à [LL'] coupe cette sphère. M est un point de la
section.
1) Quelle est la nature de la section ?
2) Dessiner en vraie grandeur le triangle IHM (dans son plan vu de face).
3) Calculer HM.​


Bonjour Jai Besoin Daide Un Industriel Est Spécialisé Dans La Fabrication De Pieds De LampesIl Crée Un Nouveau Modèle Sous La Forme Dune Sphère TronquéeLa Sphèr class=

Sagot :

Réponse :

Bonsoir

1)Nature de la section:La section d’une sphère par un plan est un cercle.Par conséquent, la section de la sphère par le plan passant par H etperpendiculaire à [LL’] est le cercle de centre H et de rayon HM.

2)Nature du triangle IHM:Le triangle IHM est rectangle en H.

3)On en déduit HM:D’après le théorèmede Pythagore appliqué au triangle IHM rectangle en H, on a:IM² = IH² + HM²M appartient à la section donc à la sphère, donc [IM] est un rayon de la sphère.10² = 8² + HM²

HM² = 100 –64

HM² = 36{HM > 0}

HM = [tex]\sqrt36[/tex]

HM=6cm

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.