Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour,

Je vous demande de l’aide pour mon exercice de mathématiques !

Merci d’avance pour vos réponses !


Bonjour Je Vous Demande De Laide Pour Mon Exercice De Mathématiques Merci Davance Pour Vos Réponses class=

Sagot :

Réponse :

f(x) = - 2 x    et  g(x) = 2 x²

1) a) démontrer que f est impaire, que peut-on en déduire pour Cf ?

          une fonction est dite impaire  si  f(- x) = - f(x)

         f(- x) = - 2 (- x) = - (- 2 x) = - f(x)     f est donc  impaire

       on en déduit que Cf possède un centre de symétrie qui est l'origine du repère

   b) démontrer que g est paire, que peut-on en déduire pour Cg ?

            une fonction est dite paire  si   g(- x) = g(x)

             g(- x) = 2(- x)² = 2 x² = g(x)   donc  g est paire

          on en déduit que Cg possède un axe de symétrie qui l'axe des ordonnées

2)  résoudre l'équation  g(x) = 2

    a) graphiquement :    S = {- 1 ; 1}

    b) algébriquement :  g(x) = 2  ⇔ 2 x² = 2  ⇔ x² = 1   ⇔ x = - 1 ou  x = 1

3) résoudre l'inéquation  f(x) > 0

  a) graphiquement :   S = ]- 2 ; 0[

  b) algébriquement :  f(x) > 0  ⇔ - 2 x > 0  ⇔ 2 x < 0  ⇔ x < 0  

⇔ l'ensemble des solutions  est   S = ]- 2 ; 0[

4) résoudre l'équation  f(x) = g(x)

   a) graphiquement :   S = {- 1 ; 0}

   b) algébriquement  f(x) = g(x)  ⇔ - 2 x =  2 x²  ⇔ 2 x² + 2 x = 0

⇔ 2 x(x + 1) = 0  ⇔ 2 x = 0  ⇔ x = 0  ou x + 1 = 0  ⇔ x = - 1

5) résoudre l'inéquation  f(x) < g(x)

   a) graphiquement :    S = ]- 2 ; - 1[U]0 ; 2[

   b) algébriquement :   f(x) < g(x)  ⇔ - 2 x < 2 x²  ⇔ 2 x² + 2 x > 0

⇔ 2 x(x + 1) > 0

   Tableau de signes

          x     - 2            - 1               0             2

        2 x             -                -        0       +

       x + 1            -        0      +                 +

          P              +        0      -         0      +

L'ensemble des solutions est :  S = ]-2 ; - 1[U]0 ; 2[  

Explications étape par étape

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.